Рис. 42.
ABCD – прямоугольник, т. к. ?А = ?В = ?С = ?D = 90°.
Ромб – это параллелограмм, у которого все стороны равны (рис. 43).
Рис. 43.
ABCD – ромб, т. к. AD||ВС и АВ||DC и AB = BC = CD = AD.
Квадрат – это прямоугольник, у которого все стороны равны. Можно также сказать, что квадрат – это ромб, у которого все углы прямые (рис. 44).
Рис. 44.
ABCD – квадрат, т. к. ?А = ?В = ?С = ?D = 90° и АВ = ВС = CD = DA.
Трапецией называется четырёхугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами (рис. 45).
Рис. 45.
ABCD и А' В' С' D' – трапеции, т. к. BC||AD, BC||AD.
Трапеция, у которой боковые стороны равны, называется раенобокой (рис. 46).
Рис. 46.
ABCD – равнобедренная трапеция (АВ = CD).
Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции (рис. 47).
Рис. 47.
EF – средняя линия трапеции ABCD: AE = EB, DF = FC.
Пусть ВА – перпендикуляр, опущенный из точки В на прямую а, и С – любая точка прямой а, отличная от А. Отрезок ВС называется наклонной, проведённой из точки В к прямой а. Точка С называется основанием наклонной. Отрезок АС называется проекцией наклонной (рис. 48).
Рис. 48.
ВА – перпендикуляр к прямой а, ВС – наклонная.
Проведём на плоскости через точку О две взаимно перпендикулярные прямые х и у – оси координат. Ось х (она обычно горизонтальная) называется осью абсцисс, а ось у – осью ординат. Точкой пересечения О – началом координат – каждая из осей разбивается на две полуоси. Условимся одну из полуосей каждой оси называть положительной, отмечая её стрелкой, а другую – отрицательной.
Каждой точке А плоскости мы сопоставим пару чисел – координаты точки – абсциссу х и ординату у по следующему правилу.
Через точку А проведём прямую, параллельную оси ординат. Она пересечёт ось абсцисс х в некоторой точке Аx. Абсциссой точки А мы будем называть число х, абсолютная величина которого равна расстоянию от точки О до точки Аx. Это число будет положительным, если Аx принадлежит положительной полуоси и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси ординат y, то полагаем х равным нулю.
Ордината j точки А определяется аналогично. Через точку А проведём прямую, параллельную оси абсцисс х. Она пересечёт ось ординату в некоторой точке Аy. Ординатой точки А мы будем называть число у, абсолютная величина которого равна расстоянию от точки О до точки Аy. Это число будет положительным, если Аy принадлежит положительной полуоси, и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси абсцисс х, то полагаем у равным нулю.
Координаты точки записывают в скобках рядом с буквенным обозначением точки, например: А(х; у) (на первом месте абсцисса, на втором – ордината) (рис. 49).
Рис. 49.
Уравнением фигуры в декартовых координатах на плоскости называется уравнение с двумя неизвестными х и у, которому удовлетворяют координаты любой точки фигуры.
Например, уравнение прямой у = kx + b, где k – тангенс угла наклона прямой к оси Ох (рис. 50).
Рис. 50.
Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной. Симметрия относительно точки, симметрия относительно прямой, поворот, параллельный перенос – виды движений.
Два отрезка называют одинаково направленными, или сонаправленными, если они совмещаются параллельным переносом.
Векторы АВ и CD называют одинаково направленными, если отрезки АВ и CD одинаково направлены. Векторы АВ и CD называют противоположно направленными, если отрезки АВ и CD противоположно направлены. Первая буква в обозначении вектора является его началом, а вторая буква – его концом. Например, у вектора АВ точка А – начало вектора, а точка В – его конец (рис. 51).
Рис. 51.
Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Обозначают модуль вектора (на пример, АВ) следующим образом:|АВ|. Очевидно, что |AB| = AB, где АВ – это длина отрезка АВ.
Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора (рис. 52).
Рис. 52.