Выбрать главу

В стремлении понять «тайны жизни» многие десятилетия идет обычно неосознаваемая война между физикой и химией. Мы обсуждаем это в главе о Э. С. Бауэре — во многом похожем на А. Г. Гурвича. Физикам хотелось бы найти особые физические свойства и присущие только живым организмам физические закономерности. Им казалось естественным думать, что жизнь — особое физическое состояние особой «живой материи». Тогда собственно биологической наукой была бы БИОЛОГИЧЕСКАЯ физика = БИОфизика.

Химики полагали, и все все более убеждаются, правильно полагали, что жизнь обусловлена возникновением в ходе естественного отбора особых веществ, взаимодействие которых и есть жизнь. «Жизнь — химический процесс» (Гегель). И в этом случае основная биологическая наука — БИОхимия.

Однако, взаимодействие молекул определяется их физическими свойствами и осуществляется на основании физических законов. Основа, сущность химии все равно физика. Тем не менее, есть четкий смысл в разделении физического и химического подхода к упомянутым тайнам жизни. В «химии» речь идет об относительно близкодействующих силах — валентных взаимодействиях и быстро убывающих с расстоянием силах Ван-дер-Ваальса. В «физике», применительно к интересующим нас задачам, предполагаются эффекты дальнодействия — следствие существования биологически активных «полей» — механических (акустических), электростатических, магнитных, электромагнитных, гравитационных.

Успехи или лучше, триумфы биохимии почти не оставили «вакансий» для предположений о роли этих полей в механизмах основных биологических явлений — современная «молекулярная биология» это — биохимия с элементами генетики, эмбриологии, цитологии, вирусологии и т. д.

Однако есть еще один вид поля — поле градиентов концентраций — «концентрационное поле». В этом поле кажущееся, «виртуальное» дальнодействие реагентов осуществляется множеством последовательных актов близкодействия по принципу передачи эстафеты на дальние расстояния «из рук в руки». А эти акты близкодействия — химические реакции. Так что это «химическое поле» и физика опять оказывается оттесненной от главной роли.

Итак, к концу нашего века БИОфизика явно проиграла БИОхимии. В самом деле проиграла в тех процессах, которыми пока ограничиваются успехи молекулярной биологии.

В самом деле проиграла? А может быть только теперь, когда мы так продвинулись в понимании биохимии и настало время для собственно БИОфизики? И, естественно, не в том потоке невежественных утверждений о «биополе», которыми полны «популярные» журналы и радио- и телепередачи.

Можно надеяться, что близко время реализации мечты А. Г. Гурвича — выяснения физической природы биологического «морфогенного» поля. А. Г. Гурвич полагал, что это поле определяет направление клеточного деления и тем самым форму возникающего органа. Надо, однако, сказать, что такой механизм «морфогенеза» как минимум не единственный. Форма вряд ли определяется последовательным изменением ориентации митотического веретена. Против этого свидетельствуют опыты по регенерации сложной морфологии многоклеточных органов и даже организмов после их расщепления — мацерации — до отдельных клеток. В знаменитых опытах (начало нашего века) Масконы по мацерации губок, свободно двигающиеся отдельные клетки активно «сползаются» вместе, образуя сложную форму полноценной губки. Аналогичные процессы можно наблюдать после мацерации эмбриональной почки цыпленка. Вполне возможно, что морфогенное поле определяет место остановки друг около друга движущихся клеток. Происходит контактное, т. е. близкодействующее торможение подвижности клеток и место такого торможения может определяться специфическим веществом, а не дальнодействующим физическим полем. Движение клеток, «целенаправленность» этого движения определяется концентрационными градиентами, т. е. «концентрационным» химическим полем. В пользу такого механизма получено много данных при исследовании формообразования многоклеточных плодовых тел свободно движущимися амебами Dictiostellum discoideum. Однако не ясно можно ли концентрационными, т. е. диффузионными, сферически симметричными градиентами обусловить сложную и тонкую форму многоклеточных структур.

Вернемся в первую треть XX века. А. Г. Гурвич полагает, что форма возникающего органа определяется направлением митотического веретена, ориентацией клеточного деления. Он отмечает, что клетки подготавливаются к делению вследствие внутренних причин — определенной последовательности внутриклеточных процессов («фактор готовности»). Однако для деления клеток нужен внешний стимул («фактор осуществления»). Этот внешний стимул со стороны «биологического поля» и определяет морфогенез.