Выбрать главу

Еще более убедителен гибрид Sphaerechinus ♂ × ♀ Arbacia. Самые длинные его хромосомы не выходят за класс 3–3,75, как и у чистой Arbacia. Следовательно здесь с уверенностью можно говорить, что 13 более крупных хромосом подверглись элиминации и очевидно у гибрида остались лишь 2 самые короткие хромосомы Sphaerechinus.

Причины элиминации сейчас конечно еще совершенно неясны. Здесь возможны различные гипотезы. Исходя из факта, что элиминация в данной форме происходит только в том случае, когда хромосомы Sphaerechinus попадают в яйца других видов, ее можно сопоставить с более медленным темпом, свойственным дроблению Sphaerechinus. Так как элиминация начинается с того, что хромосомы Sphaerechinus отстают в процессе расщепления от хромосом другого вида, то можно истолковать явления так, что хромосомы каждого вида имеют свой собственный темп деления, отвечающий темпу дробления. «Медленные» хромосомы, попадая в компанию с «быстрыми» в «быстрое» же яйцо, естественно отстают, тогда как при реципрокном скрещивании отставания уже не будет, а будет, наоборот, некоторое забегание вперед, которое может не оказаться фатальным.

Такое объяснение встречает однако ряд трудностей. Так, темпы дробления Arbacia и Sphaerechinus повидимому совпадают. Также странно, что часть хромосом оказывается в состоянии перестроиться на новый тип дробления (ср. также благополучные скрещивания трех видов рода Fundulus, различающихся темпами дробления).

Также маловероятно, чтобы здесь какую-либо роль могли играть свойства центросом, например недостаток энергии для растягивания крупных хромосом и т. п. С другой стороны, Бальцер обращает однако особое внимание на свойства самих хромосом и в частности на их величину как на единственный пока признак, доступный более точному изучению. Анализируя только что приведенную таблицу, мы действительно видим, что как в случае гибрида Sphaerechinus ♂ × ♀ Strongylocentrotus, так и Sphaerechinus ♂ × ♀ Arbacia в элиминации хромосом обнаруживается очень простая закономерность — элиминируются все хромосомы, превышающие длину хромосом материнского вида. Для эмбриона, развивающегося из яйца Strongylocentrotus, хромосомы свыше 6,75 — предел длины хромосом самого Strongylocentrotus — оказываются уже чересчур длинными и не могут удержаться в митозах. Для яиц Arbacia, предел длины хромосом которого лежит уже при 3,75, «невыносимыми» оказываются уже хромосомы в 4. С другой стороны, для Strongylocentrotus оказываются «терпимыми» короткие хромосомы морской лилии Antedon несмотря на их чрезвычайную чужеродность. Таким образом можно предполагать существование некоторого нормального отношения, в котором должны находиться величина хромосом и окружающая их плазма.

Эти наблюдения для гибридагогии представляют конечно исключительный интерес, так как они, даже и не давая пока полного понимания явления, во всяком случае открывают возможность построения ряда рабочих гипотез, особенно учитывая возможности изменения длины хромосом рентгеном через транслокации. То, что величина хромосом оказывается действительно важным фактором, определяющим возможность сосуществования в общем правильном митозе хромосом различного происхождения — весьма правдоподобно. В этом отношении особенно поучителен конечно гибрид Sphaerechinus × ♀ Arbacia, элиминирующий все хромосомы Sphaerechinus кроме 2 самых мелких, соответствующих по размерам хромосомам Arbacia.

Возможно ли сохранение в гибриде отцовских хромосом в неактивном состоянии? Этот вопрос с точки зрения хромосомной теории наследственности парадоксален, но мы считаем возможным отвести его обсуждению место ввиду наличия некоторых недостаточно изученных моментов в кариологии гибридов.

Выше излагался процесс элиминации отцовских хромосом при гетерогенном оплодотворении, как то было показано Купельвизером, Бальцером и другими, что сопровождалось возникновением в результате гибридизации чисто матроклинного потомства.

В некоторых случаях однако (Годлевский, 1906, Моррис, 1914) подобная элиминация не только не была доказана, но, наоборот, собранные наблюдения говорили в пользу ее отсутствия, причем личинки оказывались попрежнему чисто матроклинными.

Годлевский (1909) наблюдал в скрещивании морской еж × морская лилия (см. выше, стр. 116) хромосомы, да и то не точно, лишь в первом дроблений. Однако при исследовании личинок уже на стадии гаструлы, протекавшей совершенно точно, как у ежей, он обнаружил величину ядер не только не вдвое меньшую, как должно было бы быть у гаплоидов, но как бы промежуточную между величиной диплоида-ежа и диплоида-лилии, имеющую ядра значительно более крупные.