Выбрать главу

В книге излагалась аксиоматика геометрии, которая на голову превосходила аксиоматику не только Евклида, но и предложенные Пашем и Пеано. Гильберт заявил, что работа по установлению минимального числа гипотез, из которых можно вывести всю геометрию, осуществлена не полностью, и сформулировал 21 аксиому. Эти аксиомы возникли не из ниоткуда, их скрыто или открыто применяли еще в древности. Они были продуктом не чистой мысли, а скорее интуиции (это логично, учитывая, что книгу открывает цитата из Канта). В том виде, как ее задумывал Гильберт, геометрия была ближе к механике и физике, чем к алгебре и теории чисел.

Гильберт сформулировал свои аксиомы для трех систем неопределенных объектов. Объекты первой системы он назвал точками; второй — прямыми; а третьей — плоскостями. Но, в отличие от Евклида, он не дал определений элементарным геометрическим понятиям. Сами аксиомы определяют их, устанавливая внутренние отношения. В них самих содержатся утверждения о точках, прямых и плоскостях и о том, что с ними можно делать. По Гильберту, нужно избавиться от налета толкований элементарных объектов. Аксиомы, и только они (без каких-либо предварительных определений или рисунков), характеризуют элементарные объекты через их взаимоотношения. «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках», — писал он. Аксиомы допускают множественные толкования, и в этом коренное различие материальной аксиоматики Евклида и новой формальной аксиоматики Гильберта.

Используя все свое математическое умение, 21 аксиому евклидовой геометрии он классифицировал по пяти группам:

— аксиомы принадлежности, которые связывают между собой различные объекты, например позволяют утверждать, что «эта точка принадлежит этой прямой» или «эта прямая принадлежит этой плоскости»;

— аксиомы порядка, которые позволяют утверждать, что, например, «эта точка лежит между этими двумя» (как отметил Паш, данный тип аксиом полностью отсутствовал среди евклидовых постулатов);

— аксиомы конгруэнтности, определяющие соразмерность отрезков;

— аксиома параллельности имеет знаменитую формулировку о параллельных прямых;

— аксиомы непрерывности, их две: так называемая аксиома Архимеда, которая гласит, что если последовательно повторять любой из двух заданных произвольных отрезках, мы можем построить отрезок большего размера, чем первый, за конечное число шагов; и аксиома полноты линии, или непрерывности прямой, она гласит, что точки одной прямой образуют систему, неподверженную какому- либо расширению при условии сохранения линейного порядка и отсутствии противоречия аксиоме конгруэнтности и аксиоме Архимеда.

Без аксиомы непрерывности нельзя утверждать, что две окружности пересекутся в точке С и,следовательно, что можно построить равносторонний треугольник со стороной АВ (как это заявлено в Пропозиции I Книги I «Начал» Евклида).

Последней аксиомы в «Началах» не было, хотя необходимость в ней возникает даже при доказательстве Пропозиции I Книги I. То, что Гильберт извлек ее на свет, составляет один из важнейших его вкладов. Без нее Q2 (то есть плоскость, в которой у точек есть только рациональные координаты) было бы моделью евклидовой геометрии, поскольку она бы удовлетворяла всем предыдущим аксиомам. Однако, как подчеркнул Рихард Дедекинд (1831-1916), в этой дырявой плоскости две окружности, каждая из которых проходит через центр другой, необязательно должны пересекаться (что предполагалось в Пропозиции I), потому что это возможно в точке с иррациональными координатами (в дырке). Аксиома полноты линии, или непрерывности прямой, позволяет определить любую прямую с действительными числами R и, следовательно, плоскость R2 (то есть полную плоскость со всеми точками с рациональными и иррациональными координатами), где две окружности гарантированно пересекутся (см. рисунок). Это мост между синтетической геометрией, основанной на диаграммах и чертежах, и аналитической, выстраиваемой на вычислениях.

АКСИОМЫ, ДОКАЗАТЕЛЬСТВА, ТЕОРЕМЫ И ТЕОРИИ