В 1992 году Международный математический союз принял на себя инициативу связать лекцию Гильберта 1900 года с современным состоянием математики. Несмотря на огромные достижения математики XX века, дюжины примечательных проблем еще ждут своего решения. В 2000 году лауреат Филдсовской премии Стивен Смейл (р. 1930) составил список из 18 проблем, актуальных в XXI веке. Первые три — это гипотеза Римана, гипотеза Пуанкаре (знаменитый топологический вопрос, поставленный в 1904 году) и проблема Р = NP (любая ли проблема, решаемая в экспоненциальном неполиномиальном времени, имеет альтернативное решение в полиномиальном времени?). Одновременно институт Клея назначил семь премий в один миллион долларов для каждой из обозначенных проблем тысячелетия. Некоторые из них новые, другие — старые знакомые, уже более 100 лет ожидающие решения. Среди этих задач, естественно, три указанные выше проблемы, а также проблема существования решений уравнений Навье — Стокса (которые описывают движение флюидов). В 2002 году российский математик Григорий Перельман (р. 1966) доказал одну из них — гипотезу Пуанкаре.
Сегодня, спустя более чем 100 лет, можно констатировать хорошие результаты: больше половины проблем решены, хотя некоторые решены довольно неожиданно. Часть из них все еще остаются открытыми (это случай проблемы 8 — гипотезы Римана, «звезды» списка) или частично открытыми (случай проблем И, 12 и 16). Проблемы, которые Гильберт определил для нового века, не остались без внимания, они заворожили несколько поколений математиков, породив настоящий поток исследовательских статей. Решить проблему Гильберта — задача, достойная уважения, способствующая карьере. Математик, решивший одну из этих проблем, занимал «почетное положение в математическом сообществе», говоря словами Германа Вейля (1885-1955) из некролога Гильберту.
Это был случай свершившегося пророчества. Несмотря на то что присутствующих на лекции Гильберта было не так много (доподлинно неизвестно, был ли там Пуанкаре, к которому отсылали некоторые из этих проблем), она не вызвала оживленной дискуссии (за исключением столкновения с Пеано, напомнившего Гильберту о работах итальянских математиков в области второй проблемы), репутация их автора и стоявшего за ним Гёттингенского центра сделали свое дело. Математическими проблемами будущего стали именно те, которые Гильберт обозначил в своей программе, потому что этому способствовала его харизма. Однако предложения Пуанкаре также исполнились: например, развитие функционального анализа, который стольким обязан Гильберту, шло параллельно развитию квантовой механики. И когда сошла на нет тенденция к абстракции и аксиоматическим структурам, характерная для начала XX века, произошел скачок прикладной математики (исследование операций, теория хаоса и так далее), который был знаком уважения французскому математику.
Гильберт поставил свою метку на целую эпоху математики. Однако причина того, почему он вызывал восхищение у людей, не исчерпывалась его исследованиями. Гаусс и Риман, также из Гёттингена, были математиками более высокого уровня, чем Гильберт, но их влияние на современников было гораздо меньшим. Гильберт, как гамельнский крысолов, увлек многих математиков за собой в глубокую реку чистой математики. Успех проблем Гильберта в качестве исследовательской программы кроется в той ауре, которую он создал вокруг себя. Другими словами, оценить его влияние можно, только осознав, что он был не просто трудолюбивым преподавателем. Гильберт излучал заразительный энтузиазм, побуждал обмениваться научными идеями в ходе разговоров или долгих прогулок. Краеугольным камнем его математической деятельности было сочетание исследования и обучения. Отто Блюменталь (1876— 1944), первый из 69 учеников, которые написали докторскую диссертацию под его руководством, спустя 40 лет делился впечатлением, которое произвел на него прибывший в Гёттинген Гильберт:
«По сравнению с прочими преподавателями этот проворный мужчина с густой рыжей бородой и в повседневном костюме выглядел не слишком академично. Его лекции были очень лаконичными. Он читал их довольно скучно, но благодаря богатому содержанию и ясности представления о форме можно было забыть. Гильберт часто демонстрировал свои новые открытия, но всегда убеждался, что все следят за его мыслью. Он читал лекции для учеников, а не для самого себя».