Выбрать главу

Подход Гильберта разительно отличался от традиционного. Вместо того чтобы открыто искать решение проблемы, он доказал: проблема не может не иметь решения. Его доказательство было не конструктивным, а экзистенциальным. Он не предлагал решения напрямую («вот базис инвариантов»), а только доказывал, что оно обязательно должно быть («если бы не было базиса инвариантов, мы бы пришли к противоречию»). Следовательно, доказательство основной теоремы осуществлялось путем доведения до абсурда. Эта аргументация не была единодушно принята математическим сообществом.

Кронекер — одна из главных фигур немецкой математики того времени — высказался в этом отношении довольно резко. По слухам, подход Гильберта многим показался «зловещим». Для Кронекера доказательство существования обязательно означало построение того объекта, существование которого требовалось доказать. В данном случае это построение базиса инвариантов, которое, по утверждению Гильберта, существует. Он не принимал аргументов, что отсутствие существования базиса предполагает противоречие, следовательно, данный базис обязательно должен существовать, хотя его вычисление неосуществимо.

КОНСТРУКТИВНЫЕ И ЭКЗИСТЕНЦИАЛЬНЫЕ ДОКАЗАТЕЛЬСТВА

Чтобы понять разницу, рассмотрим пример. Если вопрос заключается в том, имеет ли уравнение х2 - 1 = 0 решение, у нас есть два варианта. Первый — найти решение с помощью вычислений и алгебраических манипуляций: х = 1 и х = -1. Второй — попытаться ответить косвенно: задействовав некую теорему, показать, что уравнение имеет решение, хотя мы не можем его найти. Естественно, второй путь оказывается эффективнее, когда математик сталкивается с намного более сложными проблемами, чем решение простого уравнения второй степени. Очень часто в уравнениях высшей степени легче доказать существование решения, чем найти его.

Путь, известный со времен Античности

Эта характеристика является общей для многих математических проблем. Евклид доказал, что существует бесконечное количество простых чисел без необходимости перечислять их все. Он выстраивал свое рассуждение путем доведения до абсурда. Первый шаг в таком доказательстве состоит в том, чтобы отрицать высказывание, которое нужно доказать. Чтобы доказать, что существует бесконечное количество простых чисел, Евклид предположил, что их число конечное: р1 р2,... Рn. На основе этого предположения он делал выводы, пока не пришел к абсурдному утверждению. Если предположить, будто есть только n простых чисел, то либо число р1 х р2 х ... х рn + 1 (образованное произведением их всех плюс один) является простым, либо не является. В первом случае отмечается противоречие, поскольку это новое простое число не является ни одним из партии. Во втором случае, если это не простое число, оно должно делиться на простое число, но ни одно из чисел р1, р2,... рn явно не является его делителем (деление неточное, оно дает 1 в остатке). И тут мы вновь сталкиваемся с противоречием. Следовательно, гипотеза, что существует конечное количество простых чисел, ложная: их должно быть бесконечное количество (хотя мы не можем определить их по одному). Доведение до абсурда, которое так любили Евклид и Гильберт, — один из лучших математических инструментов.

Гильберт опубликовал статью в 1890 году в журнале Mathematische Annalen, который издавал Клейн. Рецензентом выступил сам Гордан, и хотя вначале он потребовал внесения существенных изменений, в итоге признал революционный подход Гильберта. Работы Гордана составляли ужасно длинные и сложные вычисления, они контрастировали с краткой, элегантной и лаконичной статьей Гильберта, в основе которой лежало доведение до абсурда. Однако потребовалось решительное вмешательство Клейна, чтобы примирить их, поскольку Гильберт не желал трогать ни единой запятой в своей статье. В конце концов Гордан признал, что даже у теологии есть свое применение.