Вначале был знак.
Давид Гильберт, «Новые основания математики» (1922)
В учебнике Гильберта и Аккермана были сформулированы некоторые металогические вопросы о свойствах исчисления, ими разработанного. Они перекликались, в частности, с доказательством (в 1926 году предложенным Бернайсом) того, что элементарная логика, или логика пропозиций, является верной (любая доказуемая формула верна) и полной (любая логическая истина, в свою очередь, доказуема), и к этому же результату в 1922 году независимо пришел Эмиль Пост (1897- 1954). Авторы задавались вопросом — является ли таковой логика первого порядка? — хотя признавали, что ответ не найден. Ровно через год, в 1929 году, молодой австрийский логик Курт Гёдель доказал полноту логики первого порядка в своей докторской диссертации, написанной под руководством Ханса Хана (1879-1934), хотя опубликовал ее он лишь в 1930 году Эта логика была верной (все доказуемые формулы истинны) и полной (все логические истины, все тавтологии доказуемы). При исчислении предикатов первого порядка синтаксическое понятие дедукции и семантическое понятие истины совпадают, имеют одно и то же расширение.
Программа Гильберта неожиданно обрела успех: любая логически справедливая формула, то есть истинная в любой возможной интерпретации, выводима с помощью описанных исчислений. Но что произойдет, если к этому чистому исчислению предикатов добавить аксиомы и правила, которые относились бы к арифметике или к теории множеств? Останется ли оно верным и непротиворечивым? И полным?
На втором этапе в объект математического изучения следовало превратить само понятие доказательства, чтобы таким образом доказать непротиворечивость арифметики и искоренить все сомнения. В математике нет места полуправде. Для Гильберта математик занимается понятием математического доказательства, точно так же как физик проверяет работу своих приборов или философ критически осмысливает свои же аргументы. Разработка «теории доказательства» позволит рассматривать доказательства в качестве результата чистых сочетаний символов, согласно предписанным формальным правилам. В этих условиях было достаточно доказать, что никакое формальное выведение, никакое сочетание символов не может привести к формуле 0≠0 (что является противоречием). Так была бы установлена непротиворечивость арифметики. Достаточно доказать, что есть одна недоказуемая формула, поскольку если бы все формулы были доказуемы, мы могли бы вывести противоречие (доказав пропозицию и обратную ей), и система оказалась бы противоречивой. И наоборот, если бы система была противоречивой, поскольку из противоречия следует что угодно (ex contradictione sequitur quodlibet, как уверяли схоластики), мы могли бы доказать любую формулу (формула «если 0≠0, то Р» всегда истинна, справедлива, поскольку таковой не является предпосылка).
В 1920 годы Гильберт ввел идею о том, что его «теория доказательства» подходит к вопросу непротиворечивости на двух уровнях рассмотрения. С одной стороны, это математический уровень, как представлено в рамках формальной системы. С другой стороны, это метаматематический, дискурсивный уровень, на котором говорится об аксиоматизированной математике. На данном уровне следовало доказать непротиворечивость посредством ряда техник, которые изучали бы формальную систему извне, отключив ее от любого числового значения или значения, связанного с бесконечностью, просто в качестве конечных цепочек первичных знаков, на основе которых можно образовать формулы и доказательства в соответствии с некоторыми предопределенными правилами. Пропозиции, которые относятся к этому формальному скелету, к этой арифметике, лишенной значения, — это метаматематические пропозиции, которые формулируются не на языке объекта, а на метаязыке. Это как если бы на уроке английского использовался испанский язык, чтобы показать оттенки какого-нибудь англосаксонского слова. Вопрос о непротиворечивости в математике или вопрос, является ли формула 0≠0 доказуемой, — по сути, то же самое, что спрашивать, является ли определенная шахматная позиция правомерной, то есть можно ли достичь ее из исходного положения партии и по правилам передвижения фигур. Чтобы на него ответить, мы не играем в шахматы, а размышляем о собственно шахматах.