Выбрать главу

5 – положение деталей запертого затвора при наколе капсюля

6 – положение деталей затвора после выстрела, втулка под действием гильзы отошла на полный ход

7 – положение деталей затвора в конце отпирания

8 – подвижная система в крайнем заднем положении, гильза отражена

В обеих винтовках сдвиг гильзы приводит в действие только запирающий механизм, а основную часть энергии для осуществления цикла перезаряжания подвижные части получают за счёт действия остаточного давления в канале ствола на дно гильзы. Таким образом, гильзовый двигатель, в том виде, в котором он реализован в винтовках Горяинова и Мамонтова, не является в полном смысле двигателем автоматики. Его конструкция нацелена на осуществление отпирания канала ствола в тот момент, когда давление в нём упадет до величины, при которой его можно будет использовать для приведения в действие подвижных частей без опасности получить поперечный обрыв гильзы. Согласно существующей классификации, такое оружие относится к системам смешанного типа (для отпирания и перезаряжания используется разные принципы действия), хотя при некоторой доработке гильзовый принцип можно сделать полноценным двигателем автоматики.

Документальных свидетельств результатов испытания винтовок обнаружить не удалось, но, судя по тому, что развития данная тема не получила, можно утверждать, что описываемый принцип автоматики не оправдал надежд конструкторов и они прекратили работу над ним. Современный уровень знаний о динамике автоматического оружия позволяет достаточно точно определить причину. В первую очередь гильзовый двигатель обладал недостаточной мощностью, не позволяющей придать запирающему механизму энергию, достаточную для функционирования во всем диапазоне условий эксплуатации. Рабочий цикл двигателя происходит за очень короткий промежуток времени – дно гильзы выбирает зеркальный зазор за время около одной тысячной секунды, ещё до достижения максимального давления в канале ствола. Для сравнения: боковой газоотводный двигатель винтовки СВД работает в течение около 0,005 с, т.е. в 5 раз дольше. Как известно, величина импульса силы, приложенной к телу (в данном случае – к затворной раме со стороны гильзы) прямо пропорциональна времени, в течение которого эта сила действует. Таким образом, гильзовый двигатель потенциально значительно слабее классического бокового газоотводного. Повысить мощность двигателя путём продления времени его работы за счёт увеличения перемещения гильзы практически невозможно – за пределами критической величины зеркального зазора (для винтовочного патрона около 0,45 мм) происходит её поперечный обрыв. И полностью исключить его не удастся даже за счёт введения канавок Ревелли в патроннике, что доказал опыт эксплуатации винтовки СВТ.

В принципе можно повысить запас энергии затворной рамы, увеличив её вес. Но тогда становится вероятной задержка срабатывания механизма отпирания, при которой остаточного давления в канале ствола будет не хватать для приведения в действие подвижных частей. В этом случае можно использовать инерцию рамы, но это приведёт к росту габаритов и веса оружия и потере преимуществ, ради которых такой двигатель создавался… Кроме того, совершенно не поддаётся устранению крайне резкий характер работы двигателя и связанные с ним удары звеньев запирающего механизма, их перегрузка и поломки. И самое главное – гильзовый двигатель обладает практически неустранимым недостатком в виде нестабильной работы, зависящей от целого ряда параметров оружия и патронов. Например, ход затворной рамы под действием гильзы, и, следовательно, мощность двигателя, зависит от величины зеркального зазора, который, в свою очередь, зависит от допуска на размеры гильзы (у винтовочного патрона – на толщину фланца). Этот параметр колеблется в определённом допуске – у винтовочного патрона до 0,13 мм, т.е. на 8%. Параметры двигателя очень чувствительны к усилию экстракции, и, соответственно, к точности изготовления и состоянию поверхности патронника и гильз, температуре ствола, наличию смазки на трущихся поверхностях деталей и другим факторам, многие из которых изменяются от выстрела к выстрелу. И всё это без влияния затрудненных условий эксплуатации (пыль, густая смазка и т.д.)! В общем, в описанном виде гильзовый двигатель может обеспечить работу автоматики оружия только в «комнатных» условиях.

Мамонтов и Горяинов были не единственными оружейниками, которых привлекли достоинства гильзового двигателя автоматики. Похожий, по сути, двигатель, только работавший за счёт воздействия капсюля на ударник, в 1935 г. разработал Ф.В. Токарев («КАЛАШНИКОВ» №7/2011 г.). Но общий итог работ всех конструкторов оказался одинаковым – развитие темы прекратилось, а сами образцы были «похоронены» в музеях. Здесь напрашивается добавить «…а идея забыта навсегда». Как оказалось – не навсегда. Сложно сказать, был ли конструктор А. Ф. Барышев знаком с работами Мамонтова, Горяинова и Токарева (скорее всего – нет), но систему автоматики, разработанную им в начале 1960-х годов, реализованную в линейке образцов калибра 5,45-30 мм и позиционировавшуюся как «не имеющую аналогов», он построил на том же принципе. Так бывает нередко – люди, работающие над одной проблемой, при сходных ограничениях приходят к похожим техническим решениям независимо друг от друга. В тоже время, следует признать, что Барышеву удалось создать в значительной степени оригинальную и совершенную систему, в которой гильзовый двигатель является полноценным двигателем автоматики.