Выбрать главу

АХИЛЛ: Вы хотите сказать, что все муравьи утонули, и это было концом И. С. Ф.?

МУРАВЬЕД: Нет, не совсем. Муравьям удалось выжить: все они уцепились за травинки и щепки, крутящиеся в бешеных потоках. Но когда вода спала и оставила муравьев на их территории, там не оставалось никакой организации. Кастовая дистрибуция была совершенно разрушена, и муравьи оказались не способны своими силами восстановить прежнюю отлаженную структуру. Они были так же беспомощны, как кусочки Шалтая-Болтая, если бы те попытались собрать себя самих. Подобно всей королевской коннице и всей королевской рати, я пытался собрать бедного Фермовея. Я подкладывал сахар и сыр, в сумасшедшей надежде на то, что Фермовей появится опять… (Вынимает носовой платок, вытирает глаза и сморкается.)

АХИЛЛ: Как великодушно с вашей стороны. Я и не знал, что у Муравьедов такое доброе сердце…

МУРАВЬЕД: Но все мои усилия были бесполезны. Он ушел из жизни, и ничто не могло вызвать его обратно. Однако тут начало происходить что-то странное: в течение следующих месяцев муравьи, бывшие компонентами И. С. Ф., перегруппировались и сформировали новую организацию. Так родилась Мура Вейник.

КРАБ: Потрясающе! Мура Вейник состоит из тех же муравьев, что прежде И. С. Ф.?

МУРАВЬЕД: Сначала так и было, но теперь некоторые старые муравьи умерли и были заменены новыми муравьями. Однако там все еще остаются муравьи эпохи И. С. Ф.

КРАБ: Скажите, а проявляются ли время от времени черты старика И. С. Ф. в мадам М. Вейник?

МУРАВЬЕД: Ни одной. У них нет ничего общего. И я не вижу, откуда бы тут взяться сходству. В конце концов, есть несколько различных способов перегруппировать отдельные части, чтобы получить их “сумму”. Мура Вейник как раз и была новой суммой старых частей. Не БОЛЬШЕ суммы, заметьте — просто определенный ТИП суммы.

ЧЕРЕПАХА: Кстати о суммах — это мне напомнило теорию чисел. Там тоже бывает возможно разложить теорему на составляющие ее символы, расположить их в новом порядке и получить новую теорему.

МУРАВЬЕД: Никогда об этом не слышал; хотя должен признаться, что в этой области я полнейший невежда.

АХИЛЛ: Я тоже в первый раз слышу — а ведь я прекрасно осведомлен в этой области, хотя и не должен сам себя хвалить. Думаю, что г-жа Ч готовит один из своих сложных розыгрышей — я ее уже хорошо изучил.

МУРАВЬЕД: Кстати о теории чисел — это мне напомнило опять об И. С. Ф. Как раз в этой области он прекрасно разбирался. Теория чисел обязана ему несколькими важными открытиями. А Мура Вейник, наоборот, удивительно несообразительна, когда речь заходит о чем-то, имеющем даже отдаленнейшее отношение к математике. К тому же, у нее довольно банальные вкусы в музыке, в то время как Себастей был необычайно одарен в этой области.

АХИЛЛ: Мне очень нравится теория чисел. Не расскажете ли вы нам о каком-нибудь из открытий Себастея?

МУРАВЬЕД: Отлично. (Делает паузу, чтобы отхлебнуть свой чай, и снова начинает.) Слышали ли вы о печально известной “Хорошо Проверенной Гипотезе” Фурми?

АХИЛЛ: Не уверен. Это звучит знакомо, но я не могу вспомнить, что это такое.

МУРАВЬЕД: Идея очень проста. Француз Льер де Фурми, мураматик по призванию, но адвокей по профессии, читая классическую “Арифметику” Диофантея, наткнулся на страницу с уравнением

2a + 2b = 2c

Он тут же понял, что это уравнение имеет бесконечное множество решений a, b и c, и записал на полях следующий замечательный комментарий:

Уравнение

2a + 2b = 2c

имеет решение в положительных целых числах a, b, c и n только при n = 2 (и в таком случае имеется бесконечное множество a, b и c, удовлетворяющих этому уравнению); но для n > 2 решений не существует. Я нашел совершенно замечательное доказательство этого — к несчастью, такое крохотное, что оно будет почти невидимо, если написать его на полях.

С того года и в течение почти трехсот дней мураматики безуспешно пытаются сделать одно из двух: либо доказать утверждение Фурми и таким образом очистить его репутацию — в последнее время она слегка подпорчена скептиками, не верящими, что он действительно нашел доказательство — или опровергнуть его утверждение, найдя контрпример: множество четырех целых чисел a, b, c и n, где n > 2, которое удовлетворяло бы этому уравнению. До недавнего времени все попытки в любом из этих двух направлений проваливались. Точнее, Гипотеза доказана лишь для определенных значений n — в частности, для всех n до 125 000. Но никому не удавалось доказать ее для ВСЕХ n — никому, пока на сцене не появился Иогей Себастей Фермовей. Именно он нашел доказательство, очистившее репутацию Фурми. Теперь это известно под именем “Хорошо Проверенной Гипотезы Иогея Себастея Фермовея”.