Для проведения эксперимента мне в первую очередь необходимо убедить аудиторию в точности моих измерений. Поэтому я начинаю с измерения вертикально установленного алюминиевого стержня – его длина составляет 150,0 сантиметров – и прошу слушателей подтвердить, что я определенно способен измерить его с точностью до миллиметра. Итак, длина стержня в вертикальном положении 150,0 ± 0,1 см. Затем я измеряю его в горизонтальном положении и получаю 149,9 ± 0,1 см, что вполне согласуется – с учетом погрешности измерений – с результатом замера в вертикальном положении.
Чего же я добиваюсь, проделывая эти манипуляции? Многого! Во-первых, два измерения наглядно демонстрируют, что я в состоянии измерить длину объекта с точностью до 1 миллиметра. Не менее важно и то, что этим я хочу студентам доказать, что не мошенничаю и не пытаюсь их обмануть. Предположим, что я бы заранее приготовил специальную рулетку для горизонтальных замеров – это был бы очень нечестный, непорядочный поступок. Наглядно продемонстрировав аудитории, что длина алюминиевого стержня практически одинакова при обоих замерах, я тем самым подтверждаю свою репутацию и научную честность.
Затем я приглашаю добровольца из зала, измеряю его в стоячем положении и записываю число на доске – скажем, 185,2 см, конечно же, плюс-минус миллиметр с учетом погрешности. Потом помогаю парню улечься на мой стол, оснащенный специальным измерительным прибором, похожим на гигантскую деревянную мерку, которой пользуются обувщики; только я измеряю не ступню, а все тело. Попутно я отпускаю разные шуточки по поводу того, удобно ли добровольцу, шумно благодарю его за то, что он пошел на такую жертву ради науки, и так далее, в результате чего ему становится немного не по себе. Его мучает вопрос, что же я задумал? Я плотно прижимаю треугольный деревянный брусок к макушке парня, лежащего на столе, и пишу на доске второе число. Таким образом, у нас теперь есть два результата измерения, каждое с погрешностью в 1 мм. Итак, что же мы имеем?
Вы наверняка немало удивитесь, услышав, что полученные значения отличаются друг от друга примерно на 2,5 сантиметра, конечно, плюс-минус еще 2 миллиметра. Мне приходится сделать вывод, что мой подопечный действительно как минимум на 2,3 сантиметра выше в лежачем положении, чем в стоячем. Я возвращаюсь к лежащему на столе студенту, объявляю ему, что лежа он примерно на два с половиной сантиметра выше, чем стоя, и – это моя любимая часть – громко провозглашаю: «Моя бабушка была права! Она всегда оказывалась права!»
Вы по-прежнему настроены скептически? Что ж, получается, моя бабушка была проницательнее вас? Когда мы стоим, сила земного тяготения сдавливает мягкие ткани между позвонками нашего позвоночника, а когда ложимся, позвоночник расправляется. Если об этом знаешь, ситуация кажется очевидной, но многие ли об этом задумываются? На самом деле этот эффект не учли даже ученые из НАСА при подготовке первых полетов человека в космос. Астронавты жаловались, что их скафандры в космосе становились слишком тесными. Специальные исследования, проведенные позже, уже во время миссии Скайлэб, показали, что из шести измеренных астронавтов все шестеро в состоянии невесомости оказались примерно на 3 процента выше – при росте 182 сантиметра на 5,8 сантиметра. Теперь скафандры делают немного больше, с учетом этой особенности.
Ну что, убедились, насколько важны точные измерения? На той же лекции, на которой я доказываю правоту своей бабушки, я еще измеряю весьма странные объекты, чтобы проверить предположение великого Галилео Галилея, отца современной естественной науки и астрономии, который когда-то задался вопросом: «Почему самые крупные млекопитающие именно такого размера, а не намного больше?», от чего получаю море удовольствия. Сам Галилей полагал, что чересчур крупное млекопитающее было бы слишком тяжелым и его кости не выдержали бы веса и сломались. Когда я об этом прочитал, меня чрезвычайно заинтересовало, прав ли великий ученый. На интуитивном уровне его ответ казался верным, но я все же захотел проверить.
Я знал, что у млекопитающих львиная доля веса приходится на бедренные кости, и решил провести сравнительные замеры бедренных костей разных животных. Если Галилей прав, то бедренные кости супертяжелых млекопитающих будут недостаточно крепкими для поддержания их огромного веса. Конечно, я понимал, что крепость бедренной кости животного зависит от ее толщины. Более толстые кости могут поддерживать больший вес – это понятно на интуитивном уровне. Чем крупнее животное, тем толще должны быть кости.