Кроме того, очевидно, что чем больше размеры животного, тем длиннее его бедренная кость. Я понял, что смогу проверить идею Галилея, сравнивая длину и толщину бедренных костей млекопитающих разного размера и, соответственно, разного веса. На основании произведенных мной расчетов, которые слишком сложны, чтобы детально их здесь описывать (описание представлено в Приложении I), я пришел к выводу, что если Галилей прав, то толщина бедренных костей млекопитающих по мере увеличения их размеров должна расти быстрее, чем их длина. Я, например, подсчитал, что если одно животное в пять раз больше другого – и, соответственно, его бедренная кость в пять раз длиннее, – то эта кость должна быть примерно в одиннадцать раз толще.
А это означало бы, что в какой-то момент толщина бедренных костей сравнялась бы с их длиной, а то и превысила бы ее, что закономерно сделало бы тело млекопитающего непропорциональным и слишком неуклюжим. Такое животное, конечно же, не имело бы шансов на выживание, чем, скорее всего, и объясняется ограничение максимального размера существующих млекопитающих.
Словом, мое предположение, что толщина кости должна увеличиваться быстрее ее длины. Тут-то и началось самое интересное.
Я отправился в Гарвардский университет, где хранится прекрасная коллекция костей животных, и попросил показать мне бедренную кость енота и лошади. Оказывается, лошадь примерно в четыре раза больше енота, и, соответственно, ее бедренная кость (42,0 ± 0,5 см) почти в три с половиной раза больше кости енота (12,4 ± 0,3 см). Пока все шло как надо. Подставив эти числа в свою формулу, я рассчитал, что бедренная кость лошади должна быть примерно в шесть раз толще кости енота. Я измерил толщину костей (с погрешностью около 0,5 сантиметра для енота и 2 сантиметра для лошади) и выяснил, что лошадиная кость в пять раз толще, плюс-минус около 10 процентов. Пока все говорило в пользу теории Галилео Галилея. Однако я решил расширить тест, включив в него более мелких и более крупных млекопитающих.
Я опять отправился в Гарвард, где мне показали еще три кости: антилопы, опоссума и мыши. Вот как они выглядели (плюс кость лошади):
Ну разве это не прекрасно? Форма костей изменяется на удивление пропорционально; вы только поглядите, какая тоненькая и крошечная бедренная кость мыши! Малюсенькая и тонюсенькая бедренная косточка для малюсенькой мышки. Разве это не замечательно? Никогда не перестану поражаться красоте каждой детали матушки-природы.
Но как насчет результатов измерений, как они вписываются в мое уравнение? Произведенные расчеты повергли меня в шок, настоящий шок. Бедренная кость лошади оказалась примерно в 40 раз длиннее кости мыши и, согласно моим расчетам, в этом случае должна была быть более чем в 250 раз толще. А она была толще всего примерно в 70 раз.
И тут меня осенило: «А почему бы не попросить у них бедренную кость слона? Это помогло бы окончательно решить вопрос». Думаю, ребята в Гарварде были несколько раздражены, когда я явился к ним снова, но все же любезно выдали мне бедренную кость слона. К тому времени, я уверен, они просто хотели поскорее от меня избавиться! Поверьте, кость слона было очень трудно нести; она была длиннющая и, похоже, весила целую тонну. Я не мог дождаться момента, когда ее измерю, и не спал всю ночь.
И знаете, что я обнаружил? Бедренная кость мыши была 1,1 ± 0,05 см в длину и всего 0,7 ± 0,1 мм толщиной – действительно очень тонкая. Длина бедренной кости слона составляла 101 ± 1 см, то есть приблизительно в 100 раз длиннее кости мыши. А как насчет толщины? Измерив кость слона, я получил толщину 86 ± 4 мм, то есть примерно в 120 раз больше диаметра бедренной кости мыши. Однако, по моим расчетам, если Галилей прав, то бедренная кость слона должна была быть где-то в тысячу раз толще, чем у мыши. Иными словами, ее толщина должна составлять около 70 сантиметров. А на самом деле ее диаметр был где-то 9 сантиметров. В итоге мне пришлось признать, хоть и с крайней неохотой, что великий Галилео Галилей ошибался!
Измерение межзвездного пространства