Выбрать главу

Если в естественных условиях временная стабилизация круговорота обеспечена громадной массой веществ и сравнительно малой скоростью их движения, то в искусственных системах круговорота с их ограниченным количеством веществ мы столкнемся с большей скоростью их обмена, с большей подвижностью процессов. Кроме того, в искусственных системах будут отсутствовать полициклические процессы, включающие суточные, сезонные, годовые и многолетние ритмы.

Следовательно, при моделировании природных процессов в искусственных системах можно пользоваться лишь методами приближенного подобия.

При создании экологической системы в изолированном пространстве ученым приходится иметь дело с различными объектами живой природы. Эти живые объекты становятся как бы «звеньями» единой цепи вещества и энергии в такой системе. Предполагается, что подобная система может обеспечить все потребности человека, который при этом будет одним из ее функциональных составляющих. Он будет потребителем кислорода, воды и пищи и одновременно поставщиком отходов жизнедеятельности в системе.

Создание модели природного круговорота веществ в ограниченном замкнутом пространстве было бы невозможно без теоретических работ русских ученых, основоположников учения о биосфере и биогеоценологии Л. Берга, А. Григорьева, В. Вернадского, В. Вильямса, В. Докучаева, В. Сукачева и других.

Источником энергии для экологической системы будет излучаемый Солнцем световой поток. Поэтому с точки зрения термодинамики (раздела физики, изучающего характер обмена энергии и вещества через границы систем) такая экосистема представляет собой открытую систему, то есть такую, которая обменивается с внешней средой энергией и массой веществ. А обмен такой неизбежен, так как в искусственных экологических системах, так же как в природе, ряд веществ обязательно будет выпадать из круговорота в так называемые «тупики».

Теоретический максимальный коэффициент замкнутости веществ в таких системах определяется в 90–95 процентов. Следовательно, даже в идеальном случае около 5–10 процентов веществ будут выпадать из круговорота и должны восполняться из запасов. Вот почему создание полностью автономных систем, которые были бы термодинамически изолированными, то есть не обменивались бы с внешней средой ни энергией, ни массой, а также систем «закрытых» — не обменивающихся со средой веществом, — невозможно.

Я представил себе огромную оранжерею К. Циолковского с растениями. Микроклимат в ней не вполне подходящ для человека, и поэтому она изолирована от жилого помещения. Необыкновенная сила солнечного света, благоприятные климатические условия оранжереи и специальные вещества, воздействующие на растения, «сделали чудеса: не прошло и месяца, как маленькие растения были сплошь увешаны сочными, питательными и ароматными плодами. Цветение было роскошно, оплодотворение искусственно». Так описывал К. Циолковский космический цветущий сад в своем научно-фантастическом труде «Вне Земли». Не только фантастика, но и пророческое предвидение сроднило его с Г. Уэллсом, который в романе «Пища богов» также мечтал о волшебном веществе, способном безгранично увеличивать рост всего живого.

Еще Ч. Дарвин, изучая способность растений к росту, предположил, что в растениях вырабатывается какое-то особое вещество, локализующееся в верхушках стеблей. Именно оно управляет ростом. Полвека спустя советский ученый Н. Холодный экспериментально подтвердил смелую гипотезу Ч. Дарвина. В кончиках корней и верхушках проростков ему удалось обнаружить вещество, сильно активизирующее рост. Распространяясь по стеблю, оно ускоряет деление растительных клеток и способствует их растяжению. А из этих двух процессов складывается рост. Ученым удалось извлечь из растений это чудесное вещество. Из двух миллиардов проростков было получено всего четверть грамма ауксина — так был назван этот ускоритель роста.

Долгое время его состав оставался загадкой. Разгадать ее помогли химики. Оказалось, что таинственный ауксин — это давно известная химикам индолил-уксусная кислота.

Был открыт еще один чудесный препарат — гиббереллин, также выделяемый из растений. Обработанный гиббереллином табак вырастал до небывалой, шестиметровой высоты — почти вдесятеро выше обычного.

На грядках «космического огорода» я представил себе картофель, томаты, свеклу, фасоль, арахис, капусту, лук, редис, укроп, петрушку и другие овощные растения, богатые белками, жирами, углеводами, витаминами. А рядом фруктовые растения. Оранжерея обеспечивает экипаж пищей, водой и воздухом. Калорийность растений достаточна для нормальной жизнедеятельности людей — обитателей космической станции.