В прошлом, когда техника ещё не достигла современного уровня, обнаружить место повреждения подводного кабеля было чрезвычайно трудно. Ремонтное судно с этой целью вслепую проводило траление на больших площадях. Современными приборами место повреждения обнаруживается без труда. Даже в случае, если из кабельной линии в целях её повреждения изъята целая секция, приборы точно укажут длину секции.
С другой стороны, казалось бы, нет смысла повреждать подводные кабели противника, а гораздо полезнее перехватывать посылаемые по ним сообщения. Однако на практике это оказывается не таким простым делом. Если и удастся перехватить сигналы, или, точнее, электрические импульсы, которые составляют передачу, их будет трудно расшифровать, так как только на конечных пунктах они соответствуют передаваемым сигналам. Как бы то ни было, современные кабельные линии не имеют специальной защиты от подслушивания. Да в ней и нет необходимости, хотя все секретные сообщения, особенно во время войны, передаются именно по подводным кабелям. Видимо, и через сотню лет подводный кабель останется самым надёжным курьером, служащим человечеству.
XIII. ПУСТЫНИ ГЛУБИН
До появления подводного телеграфа об океанских глубинах почти ничего не было известно. Тем, кто пытался представить себе подводный мир, он казался полным тайн, населённым ужасными чудовищами, с дном, усеянным обломками кораблей и сокровищами, затонувшими в результате кораблекрушений. Морские глубины были так же далеки и недосягаемы для человечества, как и обратная сторона Луны.
Картина изменилась, как только люди попытались проложить первые кабели в открытом море. Стало жизненно необходимым собрать сведения об этом невидимом мире, который занимает территорию более двух третей земного шара.
Надо было узнать глубину под килем судов-кабелеукладчиков, а также характер грунта, который нередко находился на таком же расстоянии от киля, как самые высокие облака от поверхности земли. Капитаны судов должны были иметь уверенность, что кабель не повиснет, зацепившись за подводные скалы; важно было также знать, нет ли в грунте каких-либо включений, которые могут оказать влияние на нормальную работу кабеля, и можно ли будет в случае необходимости поднять его.
К моменту, когда лейтенант Мори начал собирать материал для своей "Физической географии моря", в центральной части Атлантики было сделано только 180 замеров глубины, не считая тех, которые проводились вблизи континентов. Это объясняется отчасти тем, что в проведении замеров раньше никто не был особенно заинтересован, а отчасти тем, что спуск и подъём линя с тяжёлым грузом на конце при глубинах в несколько километров для того времени были делом трудоёмким и продолжительным. Замер глубин стал практически осуществимым только тогда, когда линь начали опускать на дно с помощью паровой лебёдки; это уже не первый случай, когда изобретение несложного механического устройства оказывает важную услугу науке.
С 1854 года замеры глубин проводятся во всех океанах мира; в дальнейшем метод совершенствуется; пробы морского дна берут с помощью остроумно сделанных захватов и черпаков. Эти технические приспособления в настоящее время превратились в совершенные машины, которые позволяют брать образцы грунта высотой до пятнадцати метров, рисующие геологическую картину морского дна на протяжении миллионов лет.
"Челленджер" и схема его плаваний в 1872-1875 гг.
Изобретение новых приспособлений для изучения дна океанов, быстрое развитие глубоководных кабельных линий, появление в биологической науке учения Дарвина о происхождении видов – всё это вместе взятое стимулировало организацию первой крупной океанографической экспедиции – классического рейса судна "Челленджер". В период 1872-1875 годов 2306-тонный корвет с двигателем в 400 лошадиных сил обошёл все моря и океаны. Экспедиция внесла большой вклад в науку. Результаты исследований были сведены в пятьдесят массивных томов, которые и до наших дней остались наиболее полным источником информации о морских глубинах.
Главным результатом экспедиции "Челленджера" явилась революция в представлении о жизни в океанских глубинах. Воображение обывателя могло населять морские пучины различными чудищами, но учёные в начале девятнадцатого столетия считали, что никакое живое существо не может обитать в вечной темноте, при температуре немногим выше 0 °C и, больше того, под давлением в несколько сот килограммов на квадратный сантиметр.
Экспедиция "Челленджера" доказала, что учёные ошибались. На больших глубинах, до которых никогда не опускалась рыбацкая сеть, обитали живые существа. Существа эти плотоядные, так как в глубинах, куда не проникают лучи солнца, растительность отсутствует и единственным источником питания является непрерывный дождь биологических частиц, падающих с верхних слоев океана на его дно и образующих наносные породы. Подводные глубины населяют легионы кошмарных существ – рыбы, заглатывающие жертву больше собственных размеров, фосфоресцирующие животные, прожорливые чудища с длинными щупальцами, которыми они опираются о морское дно.
Таковы живые существа, плавающие и пожирающие друг друга рядом с тонким кабелем, несущим человеческие мысль и слово от материка к материку. И ещё одно можно сказать совершенно определённо: даже теперь мы имеем самое приблизительное представление о подводном мире. Примерно такое же представление было бы у наблюдающего жизнь земли с вертолёта, поднявшегося выше облаков.
Дно океана покрыто слоем плотного ила; будучи поднят на поверхность, этот ил засыхает, превращаясь в твёрдые куски, похожие на глину. Он достаточно плотен, чтобы удерживать на себе тяжёлый подводный кабель, но, если последний погрузится в ил слишком глубоко, поднять кабель бывает порой невозможно.
Отложения в виде ила состоят главным образом из мириадов скелетов мельчайших существ, известных под общим названием "планктон". Планктон играет в океане ту же роль, какую растения играют на земле, т. е. он стоит в начале, если можно так выразиться, "пищевой цепи", в конце которой находятся высокоорганизованные рыбы и даже человек.
Скелеты мельчайших существ, содержащие известь и кремний, медленно погружаются на дно, образуя слой колоссальной толщины. В бассейне Атлантического океана этот слой достигает почти четырёх тысяч метров. Такие отложения могли образоваться не за миллионы, а за много десятков миллионов лет. Это открытие, сделанное, кстати, сравнительно недавно, положило конец легенде о затерянной стране Атлантиде, отличавшейся, по преданию, развитой цивилизацией. Оно показало, что ни один континент не мог затонуть в Атлантике позже, чем примерно 150 миллионов лет назад. Этот период характеризуется развитием на земле крупных пресмыкающихся, что, как известно, происходило задолго до появления человека.
Бесконечное количество крошечных скелетов планктона, к которым следует добавить всё то, что крупные реки несут в океан, давным-давно покрыло поверхность дна однородным слоем. Но дно океана нельзя представлять как некую безликую и однообразную равнину; она пересечена подводными горами, покрыта трещинами и ущельями. На ней возвышаются причудливые скалы. В средней Атлантике находится крупнейшая на земле подводная горная гряда длиной около шестнадцати тысяч километров и шириной восемьсот километров. Северное подножье этого сред неатлантического горного района, открытое в 1850 году, было названо лейтенантом Мори Телеграфным плато. Примечательно то, что на плато совершенно не оказалось трещин, которые могли бы помешать прокладке кабеля.
Большие глубины не являются помехой для прокладки кабеля, но неровности дна представляют серьёзную опасность, так как кабель, повиснув над подводным каньоном, может порваться под действием силы тяжести. Кроме того, в районах, где морское дно образует неожиданные впадины, вполне возможны землетрясения.
Такое событие вызвало большую тревогу в Австралии в 1888 году, когда три кабеля, идущие к континенту, оборвались одновременно, и страна потеряла связь с остальным миром. Было объявлено, что кабель порван противником, и военно-морской флот срочно провёл мобилизацию, чтобы достойно встретить предполагаемого врага.