Второй космической скоростью называют скорость, которую надо сообщить аппарату, чтобы он преодолел притяжение Земли и улетел в космическое пространство. В этом случае он будет двигаться не по замкнутой орбите вокруг Земли, а устремится по параболической траектории, навсегда удаляясь от нашей планеты. Поэтому такую скорость часто называют параболической. Ее величина в √2 раза, то есть примерно на 40 процентов, больше круговой скорости. Это соотношение справедливо не только для Земли, но и для всех других планет.
Чтобы преодолеть притяжение Солнца и лететь к другим звездным мирам, аппарату надо сообщить скорость в 16,7 километра в секунду. Это третья космическая скорость. С ней аппарат станет удаляться от Земли по дуге гиперболы.
Рассказ о космических скоростях мы закончим ответом на вопрос: «Изменяются ли скорости космических аппаратов, если да, то как именно?»
В сообщениях ТАСС о запусках спутников и космических кораблей встречаются термины «апогей» и «перигей». Происходят они от греческих слов «апо» - вдали и «пери» - около, а также от греческого слова «ге» - Земля. Терминами «апогей» и «перигей» обозначают две самые характерные точки эллиптической орбиты, которая возникает, когда космическому аппарату сообщается скорость, отличная от круговой. Апогей - это точка орбиты, находящаяся на максимальном расстоянии от центра Земли, а перигей - на минимальном.
При полете по эллиптической орбите скорость аппарата будет непрерывно изменяться. Максимальную скорость он будет иметь в перигее. Здесь на минимальной высоте аппарат имеет наименьший запас потенциальной энергии. Зато величина кинетической энергии, определяемая его скоростью, имеет в этой точке максимум. Пройдя перигей, аппарат, двигаясь по эллиптической орбите, набирает высоту. Потенциальная энергия его возрастает за счет уменьшения энергии кинетической. Поэтому по мере увеличения высоты полета скорость аппарата убывает. Вот, например, какие скорости будут у аппарата, обращающегося на эллиптической орбите с апогеем 10000 километров, а перигеем 200 километров. Они равны в апогее 3,7-3,8 и в перигее 9,306 километра в секунду.
Термины «апогей» и «перигей» применимы только к орбитам искусственных спутников Земли. Противоположные точки эллиптической орбиты спутника Луны называются апоселений и периселений, спутника Солнца - афелий и перигелий.
Поскольку у нас зашла речь об элементах орбиты искусственных спутников, следует сказать и о периоде обращения и наклонения орбиты. Период обращения - это промежуток времени, в течение которого спутник совершает полный оборот вокруг небесного тела - Земли, Луны, Марса, Солнца и т. д. Наклонение орбиты искусственного спутника Земли представляет собой угол между плоскостью, мысленно проведенной через земной экватор, и плоскостью, в которой движется спутник. Это единственный параметр орбиты, обладающий тем замечательным свойством, что его значение остается практически постоянным на протяжении всего существования спутника, в то время как другие параметры могут претерпевать некоторые изменения.
Изменение плоскости орбиты (на несколько градусов и более) в принципе возможно, но для этого необходимо вмешательство в пассивный полет космического аппарата. Например, если включить реактивные двигатели при определенной ориентации аппарата. Однако чтобы изменить плоскости орбиты даже на несколько градусов, нужна большая энергия, сравнимая подчас с той, что была затрачена на выведение аппарата на орбиту. Изменение плоскости орбиты может произойти также, если космический аппарат будет пролетать в зоне протяжения Луны. Тогда под действием возмущающих сил наклонение орбиты может измениться. Однако, приняв новое положение, в дальнейшем она уже существенных изменений не претерпевает.
Есть еще одна космическая скорость, имеющая важнее значение для межпланетных перелетов. Речь идет о скорости, с которой космический аппарат, преодолев силу притяжения планеты, удаляется от нее в бескрайние просторы Вселенной. Ее называют скоростью удаления.
Вторая космическая скорость, как мы уже говорили, равна 11,2 километра в секунду. Если мы сообщим межпланетному аппарату такую скорость, он преодолеет силу земного притяжения и не упадет обратно на поверхность Земли, но и не удалится от ее орбиты. Вместе с Землей он станет двигаться вокруг Солнца по одинаковой или близкой к ней орбите.
Чтобы послать корабль или автоматическую станцию к планетам, надо при старте сообщить им такое количество энергии, чтобы они не только преодолели силу земной тяжести, но и сохранили за пределами сферы земного притяжения необходимую скорость.
Например, чтобы достичь орбиты Венеры, аппаратам нужно удаляться от Земли со скоростью минимум 2,494 километра в секунду. Для этого скорость его отлета с Земли должна составлять 11,462 километра в секунду. Для достижения орбиты Марса требуется скорость удаления 2,943 километра в секунду, а скорость отлета в этом случае должна быть равна 11,570 километра в секунду.
Неизменный интерес у всех аудиторий, в которых мне довелось бывать, вызывает вопрос о том, как управляют космическим кораблем.
Наиболее часто выполняемой в полете операцией является ориентация корабля в пространстве. Большее время полета он медленно вращается вокруг своих осей. Но в таком случае его солнечные батареи будут лишь время от времени освещаться солнцем и не дадут нужной электроэнергии. Тут нужна одноосная ориентация корабля на Солнце. Для связи с Землей при полетах к Луне и другим планетам антенны корабля должны быть ориентированы на Землю. Для коррекции орбиты, стыковки с другими кораблями и орбитальными станциями, для проведения многих научных и технических экспериментов, для спуска с орбиты необходима также пространственная ориентация космического корабля.
В настоящее время пространственная ориентация корабля может осуществляться с помощью различных систем: инерциальных, ионных, инфракрасных, радиотехнических, оптических и других. Однако наибольшую точность обеспечивают астрономические системы.
Расположение небесных объектов - Солнца, Луны, планет, звезд относительно друг друга в каждый момент времени точно известно, и если мы под нужными углами придадим осям корабля направление на небесные объекты, то получим требуемое положение корабля в пространстве.
Вот, например, как проводится астроориентация корабля по Солнцу и звезде.
Сначала в программно-временное устройство по командам с Земли вводятся необходимые данные, содержащие нужные нам значения углов. Один из оптических датчиков устанавливается в такое положение, чтобы угол между осью этого датчика и осью датчика Солнца соответствовал взаимному расположению Солнца и звезды в данный момент.
Процесс ориентации начинается с поиска Солнца. Двигатели малой тяги разворачивают корабль вокруг продольной оси до тех пор, пока Солнце не попадет в поле зрения датчика Солнца. Если мы в этом положении удержим корабль, то он окажется сориентированным лишь в одной плоскости: например, мы будет видеть внизу Землю. Но по орбите корабль может двигаться и задом наперед и боком. Чтобы этого не произошло, другие двигатели малой тяги разворачивают корабль вокруг оси, направленной на Солнце, до тех пор, пока звездный датчик не «захватит» нужную звезду. В этом положении корабль стабилизируется и далее удерживается двигателями ориентации по командам от гироскопических приборов, волчки которых раскручиваются во время стабилизации.