Этот самолет, не позволявший пилоту нарушить, его равновесие и надлежащим образом реагировавший на действие беспорядочных движений воздуха, поставил мировой рекорд продолжительности автоматического полета (свыше часа)[35].
Легко представить себе, каково было бы практическое значение такого усовершенствования, если бы оно было осуществлено надежным образом.
Подобно тому, как двумя трудными моментами мореплавания являются выход из порта и вход в него, — взлет и посадка являются двумя трудными моментами полета как потому, что они заключают в себе мгновение, в которое самолет переходит из текучей среды на среду твердую, или наоборот, так и потому, что они по необходимости должны производиться у самой земли, т. е. там, где атмосферные возмущения наиболее сильны и наиболее беспорядочны.
Наиболее трудной из двух операций, разумеется, является посадка, которая тем труднее, чем значительнее скорость, с которой самолет касается земли, так как в это мгновение получается толчок, а сила толчка пропорциональна квадрату скорости.
Поэтому нужно, чтобы самолет был в состоянии приземляться с минимальной скоростью. С другой стороны, требуются все большие скорости полета: уже пройдены 300 км в час, а 300 км в час равны, примерно, 83 м в секунду, т. е. немного более четверти скорости звука[36][37].
Поэтому следует стремиться создать самолеты с большим диапазоном скоростей, т: е. могущие летать с большой скоростью, а приземляться и взлетать с малой скоростью.
Безопасности полета будут значительно способствовать, кроме того, мероприятия, проводимые постепенно на земной поверхности в виде создания приспособленных аэродромов и посадочных площадок, практических систем сигнализации и т. д., и т. д.[38][39]
б) Стремление устранить из конструкций самолетов все легко реформирующиеся и разрушаемые материалы, еще применяемые для этой цели.
Хотя самолет уже достиг поразительных результатов, он еще очень далек от того, чтоб приобрести внешность настоящей машины в точном смысле слова, так как, не считая редких попыток, сделанных в последнее время, в его конструкцию входят еще такие материалы, как дерево и ткань, обычно исключаемые из конструкции машин в истинном смысле слова.
Дерево и ткань обладают еще и сегодня некоторыми свойствами эластичности и легкости, которых еще не удалось добиться от металлических материалов; но, с другой стороны, они страдают недостаточной однородностью и большой легкостью деформирования и изнашивания от различных причин, например метеорологических, так что они всегда допускают известную степень ненадежности как в производстве, так и в хранении,
Настоящая машина должна быть металлической, так как металл обладает точными и определенными, не легко изменяющимися свойствами. Поэтому следует стремиться к цельнометаллическому самолету, который, помимо большей надежности в конструкции и в хранении, не будет требовать постоянного хранения в ангарах, что с точки зрения военного применения явится значительнейшим достижением[40][41].
в) Стремление к увеличению грузоподъемности самолетов. Это стремление отвечает целям экономии и желанию увеличить радиус действия самолетов.
Большая грузоподъемность уменьшает общие (накладные. — Пер.) расходы; самолет, перевозящий 2 пассажиров вместо 1, не нуждается в удвоении своего экипажа. Поэтому дешевле перевезти 10 пассажиров или 10 ц груза одним самолетом, нежели десятью.
Увеличение грузоподъемности, дающее сверх того возможность видоизменять в значительных пределах соотношение между полезной нагрузкой и весом запаса горючего и смазочного для моторов, увеличивает радиус действия самолетов. Регулярное трансокеанское сообщение сможет поддерживаться лишь самолетами с грузоподъемностью, превышающей теперешнюю.
Подъемная сила самолета создается крыльями; его общий вес распределяется по поверхности крыла, но нагрузка на каждый квадратный метр крыла не может превосходить определенных пределов; поэтому, чем большую грузоподъемность хотят дать самолету, тем большую поверхность следует придавать его крыльям.
Казалось, что максимальной поверхности крыльев можно достигнуть трипланной конструкцией, но и этот максимум не мог превзойти известных пределов.
Однако, недавно в Италии был построен и испытан самолет, основанный на новых принципах, на котором оказалось возможным соединить, располагая их. одну позади другой (тандемом. — Пер.), серию трипланных коробок, упразднив хвост и достигая управления другими способами. Этот самолет летал, выдержав, таким образом, практическое испытание[42].
39
A также с помощью методов «слепого полета» (вождения самолета по приборам без видимости земли).
40
В настоящее время дерево и ткань являются анахронизмом, и уже становится трудно представить себе самолет нецельнометаллический. — Прим. автора.
41
Несмотря на громадные успехи и широкое развитие металлического самолетостроения, это утверждение Дуэ было (и сейчас остается) преждевременным и не вполне обоснованным с производственно-технической и эксплоатационно-экономической точек зрения (особенно в отношении легких гражданских самолетов).
42
Речь идет о гидросамолете лодочного типа фирмы Капрони Капрониссимо», весьма своеобразной конструкции «триплан-триплекс» (тройной триплан), построенном в 1920–1921 гг. Основные данные: 8 моторов Либерти х 350–400 л. с., размах — 30,5 м, длина — 20,5 м, вышина — 7,2 м, несущая поверхность — 715 кв. м, вес пустого самолета — 14 т, полная нагрузка — 10 т (в том числе горючее и смазочное — 2,5 т на 3 ½ часа полета, экипаж — 5 чел. — 0,5 т, пассажиры — 7 т (70–80 чел.), общий вес — 24 т. Максимальная скорость — 90 (120) км в час. Самолет, по имеющимся сведениям, погиб от аварии при посадке после первого полета (потонул). Аэродинамически такая схема чрезвычайно невыгодна.