Аналитический характер всех необходимоистинных высказываний, настойчиво постулируемый Лейбницем, указывал дорогу развитию логики на базе математики как математической, символической логики. Работа Лейбница «О комбинаторном искусстве» (1666) провозглашала соединение Аристотелевой логики со знаковым исчислением и открывала новые горизонты. Философ не только защитил силлогистику от нападок Гоббса, Декарта и Локка, заявив, что она «есть одно из прекраснейших и даже важнейших открытий человеческого духа» (4, с. 423), но и сделал тот шаг, без которого силлогистика была обречена на застой. Как ни порицал Гегель Лейбница за внедрение «механических» приемов в логику, за этими приемами было великое будущее.
Лейбниц оказал, видимо, влияние на теоретиков, которым пришлось открывать математическую логику заново, — на де Моргана, Фреге, Пеано. И Рассел (1900), и Кутюра (1901) начали свои исследования по математической логике именно с работ о Лейбнице и признали в Лейбнице ее основателя. «В области логики и математики, — писал Рассел в 1937 г. в предисловии к изданию своей книги о Лейбнице, — многие из его мечтаний осуществились и показали наконец, что они нечто большее, чем фантастические выдумки, как это казалось всем тем, кто выступал после него вплоть до настоящего времени» (43).
Другая мысль, воодушевившая Лейбница, состояла в ориентации на самое широкое применение логического исчисления. Г. Шольц (в статье 1942 г.), Г. Мартин (41), Р. Йост (47) и Н. Решер (42) подчеркивают, что великий мыслитель проложил путь математической логике в философию и это обещало придать последней столь недостающую ей точность (правда, лишь в дальнейшем, ибо философское применение самим Лейбницем ряда логических понятий, как и понятий «дифференциал», «бесконечность» и других, было не точным). Формальное оперирование символами, исчисление их (calculus ratiocinator), о чем лишь мечтали Декарт и Гоббс, призвано было внести глубокие изменения во все области знания, очистить их от схоластики, уточнить используемые выражения и алгебраизировать мышление ученых.
Всеобщее символическое исчисление, введенное в научную практику повсюду, по мнению Лейбница, позволит в будущем прийти к тому, что, «если между людьми возникнут споры, потребуется лишь сказать: „Подсчитаем!“, дабы без дальнейших околичностей выяснить, кто прав» (19, S. 16). В письме Лопиталю от 23 апреля 1693 г. Лейбниц подчеркивал, что видит секрет успеха в тщательной разработанности не только первичного алфавита понятий, но и искусства его употребления, которое выводило бы истинные предложения из комбинаций простых идей или неопределяемых терминов. Это были очень плодотворные мысли.
Мыслитель надеялся, что истинный метод комбинирования сослужит роль нити Ариадны, причем «универсальная математика (mathesis universalis)» должна состоять из двух частей, из которых первая — это «комбинационное искусство (ars combinatoria)», применяемое к предварительно обозначенным знаками качества вещей, а другая — логистика или логическая алгебра, оперирующая любыми количествами и любыми объектами, которые поддаются количественному выражению. Таким образом, мечтания Лейбница о совершенной универсальной науке опирались на понимание тех колоссальных преимуществ, которые несет за собой последовательная и всесторонняя формализация (см. 14, 7, S. 43–49, 218–227). В заметках 1675 г. он превозносил «универсальную математику» как «логику творческой силы (der Einbildungskraft)» (19, S. 452).
Правда, Лейбниц преувеличивал возможности строгих исчислений. Абсолютно всеобъемлющее исчисление неосуществимо, и познавательный процесс, как писал сам Лейбниц, бесконечен. Но несколько преувеличены критические замечания по адресу Лейбница иного рода: ряд авторов, как, например, молодой Рассел, упрекали его в том, что его стремление удержать вследствие известных онтологических воззрений логику в рамках субъектно-предикатной схемы предложений мешало пойти дальше арифметизации силлогистики. Однако Н. Решер (42, р. 77), Г. Шольц и Г. Мартин (41) справедливо оценивают подобные упреки как преувеличение, указывая на то, что Лейбниц обратил внимание и на изучение иных отношений, чем неравенство, включение класса в класс или принадлежность признака вещи, а именно симметричности, транзитивности и других, но считал, что все отношения могут быть сведены к предикатам. Характерно и то, что он рассматривал пространство и время как отношения и предложил даже специальный знак для обозначения «отношения вообще».