Выбрать главу

Элементарный вопрос: как эти огромные самолеты, которые перевозят сотни пассажиров и тонны груза, удерживаются в воздухе?

Неспециалисты задают мне этот вопрос чаще всего. Хотя возможность поднять технику массой в сотни тысяч килограммов кажется чудом, на самом деле все на удивление просто. В следующий раз, когда будете ехать по шоссе, высуньте руку из окна автомобиля и держите ее перпендикулярно машине и параллельно земле. Согните руку вверх, навстречу потоку воздуха. Как думаете, что произойдет? У вас получится крыло, и ваша рука полетит. И она будет лететь до тех пор, пока вы удерживаете ее под нужным углом и едете с достаточно высокой скоростью. Рука летит, потому что ее удерживает воздух. С самолетом дело обстоит точно так же. Конечно, автомобиль не может взлететь. Но представьте, что у вас огромная рука, а в двигателе вашей машины достаточно лошадиных сил, чтобы ехать супербыстро. Чтобы оторваться от земли, нужно добиться в полете правильного соотношения четырех противодействующих друг другу сил. Тяга должна превосходить лобовое сопротивление, а подъемная сила — вес. Как сказал Орвилл Райт[3]: «Самолет не падает, потому что у него нет на это времени».

Еще один основополагающий принцип авиации — закон Бернулли, названный в честь Даниила Бернулли, швейцарского математика, жившего в XVIII веке и никогда не видевшего самолет. При прохождении жидкости через узкий участок или искривленную поверхность ее скорость увеличивается, а давление падает. В нашем случае жидкость — это воздух, который движется быстрее, проходя через искривленную верхнюю поверхность крыла (область пониженного давления), чем при прохождении по более плоской нижней поверхности (области повышенного давления). В результате получается толчок вверх. Крыло при этом плывет, если можно так сказать, на подушке высокого давления.

Заранее приношу свои извинения за примитивное объяснение, но суть в следующем: разница давлений по Бернулли вместе с простым отклонением молекул воздуха (которое легко себе представить, высунув руку из окна автомобиля) порождают неотъемлемый компонент полета — подъемную силу.

Значительное падение подъемной силы называется сваливанием. Основной принцип можно наглядно продемонстрировать на шоссе: поверните вашу ладонь на более значительный угол к набегающему потоку или затормозите автомобиль до определенного уровня, и ваша рука перестанет лететь.

Даже одного взгляда на устройство крыла достаточно, чтобы понять: не все так просто

Верно. Ваша рука может полететь, даже кирпич полетит, если под ним будет достаточно воздуха, но он не очень-то хорошо к этому приспособлен. Крылья реактивного самолета должны быть очень хорошо приспособлены к полету. Оптимальный режим функционирования крыльев — крейсерский полет. Для него основной массе реактивных самолетов нужно набрать большую высоту и лететь со скоростью, немного меньшей, чем скорость звука. Но крылья должны обладать хорошими характеристиками и для полетов на меньших высотах и скоростях. Со всем этим приходится разбираться инженерам при помощи аэродинамических труб. Поперечный профиль крыла, вокруг которого циркулирует воздух, называется аэродинамическим профилем, он сконструирован чрезвычайно тщательно. Не только поперек, но и вдоль крыла форма и толщина меняются от его передней части к задней и от корня до законцовки. Все это делается исходя из аэродинамических расчетов, которые мы с вами никогда до конца не поймем.

Крылья оснащаются целым рядом дополнительных компонентов: закрылками, предкрылками и интерцепторами (спойлерами). Закрылки двигаются назад и вниз — так они увеличивают кривизну аэродинамического профиля, обеспечивая тем самым безопасный и стабильный полет на малых скоростях. (Самолеты взлетают и садятся с выпущенными закрылками, хотя конкретные настройки всегда разные.) Закрылки бывают внешними и внутренними[4] и могут быть разделены на секции по горизонтали. Предкрылки отклоняются вперед от передней кромки крыла и выполняют аналогичную функцию. Спойлеры — это прямоугольные поверхности, выдвигающиеся из верхней поверхности крыла. Поднятый спойлер уменьшает поток воздуха по верхней поверхности крыла, чем снижает подъемную силу, увеличивая аэродинамическое сопротивление. Во время полета они используются для увеличения скорости снижения, при приземлении — помогают тормозить.

Помню один из своих первых полетов на самолете — это был Boeing 727. Я сидел у окна, прямо позади крыла, и видел, как во время снижения крыло стало будто бы распадаться на части. Опустились большие трехщелевые закрылки, закачались и затряслись спойлеры, встали на свои места предкрылки. Словно по волшебству передо мной открылся вид сквозь крыло. Я словно смотрел через кости какого-то древнего окаменевшего животного на дома и деревья, которые открылись моему взгляду в тех местах, где только что были части крыла.

вернуться

3

Младший из братьев Райт (1871–1948), родоначальников воздухоплавания. Прим. науч. ред.

вернуться

4

Закрылки расположены на задней поверхности крыла. Внутренние — около фюзеляжа, внешние — ближе к концу крыла. Прим. науч. ред.