В рамках системы Аристотеля тела одинаковых размеров, формы и веса должны падать с одинаковой скоростью, поскольку на них действуют те же самые силы гравитации (сопротивление также учитывается — оно одинаково для такого мысленного опыта). С другой стороны, если два тела, имеют одинаковые форму и размеры, но разный вес, то тяжёлое тело должно падать быстрее, поскольку при равном сопротивлении сила тяготения, действующая на предмет большего веса, должна быть больше. Ускорение падающих тел объяснялось увеличением тяжести тела по мере приближения к своему естественному местоположению. Значительно позднее Галилей установил ошибочность этих утверждений.
Другим важным, но тоже ошибочным выводом механики Аристотеля, является то, что все тела вблизи Земли должны двигаться по прямым линиям. Это относится как к естественному, так и к вынужденному движениям. Чтобы поставить под сомнение это положение нет необходимости проводить специальные исследования. Повседневный опыт, кажется, с очевидностью опровергает его. По Аристотелю стрела, пущенная под некоторым углом к горизонту, должна двигаться по прямой до тех пор, пока не истощится сила, передаваемая ей тетивой, затем она должна падать вертикально вниз. Траектория должна быть ломаной, состоящей из двух прямых линий (рис. 1.3). Но этого никто никогда не наблюдал. Такой эксперимент показал бы несостоятельность теории движения Аристотеля. Однако, как его научный авторитет, так и стройная система его научных взглядов оказались более убедительными.
Рис. 1.3. Траектории стрелы в теории Аристотеля (а) и реальные: при сопротивлении воздуха (б) и без сопротивления воздуха (в)
Подведём некоторый итог. С одной стороны, с современной позитивистской точки зрения представления Аристотеля о законах тяготения ошибочны, они не соответствуют эмпирическим данным. С другой стороны, не будем очень строги. Это было самое начало попыток понять, как устроен мир, а вместе с этим — что есть тяготение. Были введены некоторые базисные понятия, оперируя которыми уже можно на научном уровне того времени исследовать явление. Центр Вселенной (он же центр Земли) был определён как центр притяжения. Падающие на Землю тела были наделены внутренним свойством «тяжесть». Пройдёт время, и осмысление, переосмысление и развитие этих понятий приведёт к закону всемирного тяготения Ньютона и теории относительности Эйнштейна
Что касается небесных тел, то в механике Аристотеля считалось, что все они отделены от Земли и не имеют с ней ничего общего. На Земле четыре основных элемента претерпевают непрерывные взаимопревращения, тела могут состоять из различных сочетаний основных элементов. Различные предметы возникают, какое‑то время существуют, а затем видоизменяются, распадаются, исчезают. На небе же ничто не меняется. Отсюда делается вывод, что существует пятый, неизменный и идеальный элемент — эфир, из которого и состоят небесные тела Вакуум, пространство без какого‑либо вещества, был недопустим в системе Аристотеля.
Расстояния до небесных тел не были известны во времена Аристотеля. Сам он считал, что нет возможности их вычислить. Тем не менее, сфера за сферой были выстроены вполне однозначным образом (рис. 1.1). Прямым способом вычисления расстояния могло бы служить использование параллакса объекта (рис. 1.4). Горизонтальным параллаксом называют угол между двумя направлениями от светила на центр Земли и по касательной к ней. С Земли этот угол определяется как разность угловых координат светила на небе для двух наблюдателей, для одного из которых светило в зените, а для другого — на горизонте. Поскольку в то время радиус Земли был уже известен, можно было вычислить расстояние до объекта. Впервые применил метод параллакса в астрономии древнегреческий учёный Гиппарх (около 180 —125 г. до н. э.) для определения расстояния до Луны, которое стало известным чрезвычайно точно. Причём для вычисления параллакса Луны он использовал разность её угловых координат на восходе и закате. Измерить расстояния до других планет стало возможным только после начала использования в астрономии телескопов. Хотя опосредованным методом Гиппарх сделал оценки расстояния до Солнца, а также приблизительно определил его размеры.
Итак, в системе Аристотеля лунная сфера является ближайшей к Земле (рис. 1.1) и представляет собой границу между не подверженными разрушению небесами и изменчивым миром Земли. Отсюда возникло выражение «подлунный мир». За пределами лунной сферы, в «надлунном мире», природа представлялась абсолютно совершённой, а движение небесных сфер, определяющих движение