Hand Spinning Wheel
All this was changed, in the second half of the eighteenth century. First, an ignorant but ingenious man, named James Hargreaves, invented a machine which he called a "spinning jenny." This drove eight spindles, and (in later forms) even eighty spindles, at the same time. This invention alone caused an enormous increase in the amount of thread spun; but the changes did not stop here. Soon a man named Richard Arkwright invented another sort of spinning machine, which he called a "water-frame," because it was run by water-power and not by hand power. Then Samuel Crompton had the happy thought to combine the best features of the "jenny" and the "water-frame," into a machine which he called "the mule," because of its mixed character.
When these improvements were fully completed, it became possible for a single person—even a little child—to attend to a number of machines, and to spin as high as twelve thousand threads at a time. In this way, far more thread was manufactured than the old hand looms could weave into cloth.
Spinning Jenny
If you examine a piece of cloth, you will see that it is made up of two sets of threads, crossing each other at right angles. The treads running lengthwise are called the "warp," and those running crosswise are called the "weft." In the old hand loom the shuttle, which carries the weft, was thrown back and forth across the warp by hand. Two men were necessary to operate the loom, one throwing the shuttle from one side, and the other throwing it back. The first improvement in the method of weaving was made in 1738, when a "flying shuttle" was invented which returned of itself to the weaver, without the help of a second person. As the new improvements in spinning began to come into effect, and the amount of thread spun increased so enormously, men began to feel that further changes in weaving were necessary. A clergyman, named Dr. Cartwright, showed what these might be.
"Why does not someone," he asked one day, of some gentlemen with whom he was talking, "invent a loom which can be run by water or steam-power?"
"It can't be done," they all replied, very positively.
"I am sure that it can be done," replied Dr. Cartwright; and he set to work to prove it.
He had never invented anything, and he had never seen a loom in operation. But, in three years' time, he produced a power loom which really wove cloth, in a rude and clumsy fashion. By later inventions, he greatly improved this first effort, so that it became the father of all great cloth-weaving looms of later times. With the power loom, weavers became able to keep up with the spinners, and cloth became much cheaper and more plentiful than it had ever been before.
At first, the looms were run by water power, which had been used for ages to run flour and grist mills. But water power in the streams changed with the seasons; moreover, it was not to be had at all places. Fortunately, it was not long before the steam engine was invented, to aid not only the spinning and weaving, but the countless other operations of modern life to which machinery was soon applied.
For nearly two thousand years men had known of the expansive power of steam; but it was not until the beginning of the eighteenth century that this force was made practically useful, in the form of a steam pump for pumping water out of mines. The illustration on page 300 shows the form of this crude engine. The steam entered a "cylinder" under the "piston-head," and thus raised the cross-beam. The top of the cylinder was open, and when the steam under the piston-head was sufficiently condensed by cooling, the pressure of the air above forced back the piston, and all was ready for another stroke. The troubles with this early steam engine were chiefly these: it was very slow and weak in its action; it wasted a great amount of steam, and so used up much fuel; and it could only work in one direction.
The real inventor of the modern steam engine was James Watt, a maker of mathematical and astronomical instruments. While repairing a model of one of these early steam pumps, he noticed its waste of steam, and set to work to remedy it. It would take too long to describe all of the changes which he made. It is enough to say that his first changes made the steam engine quick-working, powerful, and saving of fuel; but it was still useful only for pumping. His later inventions, however, enabled it to turn a wheel, and so adapted it to all kinds of work. In 1785, the steam engine was first applied to running spinning machinery, and its use spread rapidly. By the end of the eighteenth century, there were as many steam engines in use in England as there were water and wind mills.
Early Steam Engine for Pumping
But engines and machinery are largely made of iron, and, until the latter part of the eighteenth century, iron was scarce and costly. So all these inventions would have been of little use if it had not been for improvements in the manufacture of iron and steel.
For ages iron ore had been "smelted"—that is, melted and freed of its impurities—by mixing it with burning charcoal. But the forests of England, from which the charcoal was made, were decreasing rapidly, and it was clear that little increase could be made in the amount of iron produced, as long as charcoal was used as the fuel. It was found, however, that the smelting could be done just as well, and much cheaper, by using coke, made from ordinary coal; and the supply of coal was abundant. At the same time, the bellows, which fanned the fire and made it burn with sufficient heat, were replaced by other inventions which gave a stronger and steadier draft; and improvements were also made in the tools for hammering out the iron for wrought iron, and in casting it. Furthermore, Watt's improved engines benefited mining, by making it easier and cheaper to pump out water, and so to operate deep mines. From year to year these improvements have gone steadily on, and the result is that the supply of this necessary metal has constantly become more plentiful and cheap, as the increased use of machinery has created new demands for it.
Important changes were also made in the conditions under which manufacturing was done. Formerly, manufacturing was carried on under the "domestic system"—that is, each workman (a weaver, or the like), set up his own tools, in his own house, and used materials which he himself paid for; then when his goods were made he sold them to the dealers, and received the price for them himself. He was his own employer, and supplied his own capital; he worked when he pleased, and how he pleased; and his wife and children assisted him. Ordinarily, too, he had a garden, or little farm, which he cultivated; and so he was not dependent for his living entirely on his manufacturing.
The new inventions caused the "factory system" to take the place of the "domestic system." Machines in large numbers were now brought together under the roof of one "factory," in order to take advantage of the steam or water power; and these were the property of an "employer" who hired people for "wages" to run them. The employer supplied the materials, and received the manufactured good, which he sold as he pleased. The work people had to move to the crowded towns, where usually the factories were situated, and so they could no longer have their gardens. In these ways, the working people became more dependent on their employers, and the problems of "labor" and "lack of employment" first began to arise. The fact that women, and little children often only six years old, were hired for a great deal of the work, and that they were forced to labor long hours, in dark, close, and unhealthy rooms, gave rise to additional problems, which by and by demanded solution.
With these changes in manufacturing, there came also changes in the means of transportation.
Stage Coach
Down to the eighteenth century, the means of travel and transportation remained just about what they were in the most ancient days—except that the roads were often worse than they had been under the Roman Empire. Half of the year, the only means of travel was on horseback, because of the mud-holes with which the roads were filled. Heavy articles—such as grain, coal, iron, and the like—could scarcely be carried from place to place; and often scarcity, or famine, might prevail in one district, while another district had more than enough, but could still not get its produce to the market. About the year 1640, stage coaches came into use in England, but often it took three weeks for one of these to go from London to Edinburgh.