Таким образом, работы Пастера и де Бари подвели итог дискуссии о самопроизвольном зарождении жизни, продолжили исследования микроскопических организмов, начатые Левенгуком, послужили основой для дальнейшего развития микробиологии и фитопатологии.
Глава вторая. В лаборатории у микологов
В лаборатории у микологов
Как мы изучаем окружающий мир
Изучение окружающего нас мира ограничено тесным кругом доступных нам восприятий, собираемых при помощи органов чувств, этих, по выражению И. П. Павлова, "анализаторов внешнего мира". Расширить горизонт непосредственных наблюдений — издавна было одной из важнейших задач науки. Результатом такого стремления явилось открытие мира телескопического, с одной стороны, и микроскопического — с другой. Только с изобретением микроскопа перед нами открылся бесконечный мир мельчайших существ, и все успехи микробиологии, микологии, да и многих других наук оказались тесно сплетены с успехами в области микроскопической техники.
Увеличительные стекла были известны с древности. Предание гласит, что император Нерон наблюдал бой гладиаторов через отшлифованный смарагд.
Увеличительные стекла были известны с древности
В средние века увеличительными стеклами пользовались почти исключительно для забавы и называли их "витра пиликариа", то есть "блошиные стекла", так как одним из обычнейших объектов наблюдения служили блохи. В начале XVII века, когда зарождалась микробиология, не было фабрик, изготовлявших оптические приборы, и ученым поневоле приходилось самим овладевать этим сложным мастерством, достигая иногда в этом поразительного искусства. Например, Ньютон установил законы отражения и преломления света на им же самим изготовленных зеркалах и линзах и собственноручно построил большой телескоп, по сей день хранящийся в библиотеке Лондонского королевского общества как драгоценная историческая реликвия.
Первые исследователи микроскопического мира пользовались простыми лупами различной силы увеличения, которые изготавливались из стекла, кварца и даже алмаза. Оптическая часть первых микроскопов XVII-XVIII веков была, конечно, весьма несовершенной. Штативы делали из картона, кости, рога и тому подобных материалов. Самим микроскопам давали причудливые названия, например "окулюс артифишиас" — "искусственный глаз" и тому подобное.
Однако уже в конце XVII века микроскопы появились на прилавках магазинов: несколько фирм наладили их серийное производство. Покупатели были самые разные — ученые и люди, весьма далекие от науки. Для многих микроскоп служил диковинной забавой, некоторых заставлял глубоко задуматься.
В наше время микроскоп стал одним из важнейших приборов, с помощью которых ученые открывают все новые и новые тайны природы. Как был бы поражен Антони ван Левенгук, заглянув в современную лабораторию! Особенно, наверное, его поразили бы микроскопы — ведь в отличие от его луп современный световой микроскоп увеличивает в 3000 раз, а электронный микроскоп — в сотни тысяч и миллионы раз, что позволяет досконально изучить живую клетку.
Ученые, инженеры, оптики, физики, биологи разных стран, используя микроскоп в своих исследованиях, постоянно, хотя и не так быстро, как хотелось бы, улучшали его конструкцию, все более расширяя тем самым границы знаний.
В 1903 году австрийские ученые Г. Зидентопф и Р. Зигмонди нашли новый способ наблюдения объектов — так называемый метод темного поля. Идея этого метода состояла в том, что исследуемый прозрачный объект освещался косыми лучами, которые при отсутствии рассеяния в образце не попадают в объектив микроскопа. Если объект исследования содержит включения также прозрачные, но с другим показателем преломления, то прошедшие через эти включения и изменившие свое направление световые лучи попадают в объектив, и включение становится видимым. Так как большая часть световых лучей в объектив не попадает, поле зрения темное, а на его фоне видны светлые изображения микровключений.
В 1935 году голландский физик Ф. Цернике изобрел фазово-контрастный микроскоп (в 1955 году он получил за это открытие Нобелевскую премию). Преимущество этого прибора заключалось в том, что с его помощью можно было наблюдать живые клетки микроорганизмов, что далеко не всегда возможно при работе с обычным микроскопом. Чтобы хорошо рассмотреть препарат в световой микроскоп, микроорганизмы обычно фиксируют (убивают) и окрашивают; при этом существует опасность изменения структуры клетки, появления "артефактов" (искусственно вызванных процессов или образований). Поэтому очень важно наблюдать организмы в живом состоянии. Фазово-контрастный микроскоп обладает специальным приспособлением, которое изменяет длину пути световых волн, исходящих от наблюдаемого объекта, благодаря чему возникает фазовый сдвиг на одну четвертую длины волны. Это усиливает рельеф изучаемого объекта и помогает увидеть некоторые мелкие элементы структуры клеток.