Наверное, именно поэтому в 2000 году руководство престижной частной организации, поддерживающей математические исследования, — Математического института Клэя — назвало решение гипотезы Пуанкаре одной из семи наиболее важных задач современной математики и назначило беспрецедентный денежный приз в один миллион долларов тому, кто сможет представить аргументированное доказательство теоремы.
Сразу же началась изнурительная гонка между отдельными исследователями и целыми коллективами, но еще раньше в данном направлении далеко продвинулся пока еще малоизвестный российский математик из Санкт-Петербургского отделения Математического института, подписывающий свои англоязычные работы — Гриша Перельман…
-76-
Гл. 2. Почерк гения
«Мы законодатели Вселенной; возможно даже, что опыт не дает нам ничего, кроме созданного нами, и что сам материальный мир есть величайшее из наших математических творений».
Рис. 29. Электронная модель преобразования Пуанкаре — Перельмана
В ноябре 2002 года математический мир облетела сенсационная новость: некий малоизвестный российский математик выложил на общедоступном интернет-сервере доказательство гипотезы Пуанкаре! Тут надо заметить, что, подобно любому законченному художественному или музыкальному произведению, доказательство математической теоремы, тем более такого уровня, как теорема Пуанкаре, должно иметь совершенно особую логику, форму и концепцию. Решение здесь обычно строится на формулировке ряда аксиом как общепризнанных утверждений.
-77-
Затем начинается хитроумная вязь математических выкладок, логика которых приводит к решающему выводу, за которым и следует конечный результат. Самое главное — не ошибиться в нанизывании звеньев логической цепочки доказательств, ведь даже незначительная неточность тут же бракует итоговый результат.
Почему же столько критических замечаний вызвала именно форма ознакомления с результатами исследований российского математика?
Дело в том, что интернет-издания, как правило, не рецензируются, в том числе и электронные архивы. Между тем печатные научные издания придают независимому рецензированию публикуемых материалов очень большое значение, считая, что только экспертные оценки признанных профессионалов могут показать корректность и оригинальность представленных материалов. Заметим, что эта общепризнанная норма научных публикаций часто оказывалась под огнем критики. Например, Эйнштейн принципиально не публиковался в рецензируемых изданиях.
Итак, вернемся в 1992 год, когда молодой, но уже довольно многообещающий сотрудник Математического института им. В. А. Стеклова Григорий Перельман попал на лекцию светила топологии Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи — новом инструменте для изучения гипотезы геометризации Терстона — факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности со временем деформироваться примерно так же, как мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.
-78-
Рис. 30. Односвязное двумерное многообразие Пуанкаре
«С точки зрения тополога не существует разницы между бубликом и кофейной кружкой с ручкой. Оба эти объекта имеют дырку и могут быть трансформированы друг в друга без нарушения целостности. Для описания этого абстрактного топологического пространства Пуанкаре использовал слово "многообразие" (manifold). Простейшее двумерное многообразие — поверхность футбольного мяча, которая для тополога является сферой, даже если ее растянуть или скомкать. Доказательством того, что объект представляет собой двумерное многообразие (так называемую two-sphere), является то, что объект — односвязный (simply connected), то есть в нем нет дыр. В отличие от футбольного мяча бублик не является сферой. Если вы накинете лассо на футбольный мяч и начнете его затягивать, в результате вам удастся стянуть узел лассо в точку, при этом лассо будет все время находиться на поверхности мяча. Если вы завяжете лассо вокруг дужки бублика, стянуть его в точку, не разрушая целостности бублика, вам не удастся».
-79-
Рис. 31. Преобразования двумерных многообразий (современное компьютерное моделирование)
Свойства двумерных многообразий были хорошо известны уже в середине XIX века, однако оставалось неясным, справедливо ли для трех измерений то, что истинно в случае двух. Пуанкаре предположил, что все замкнутые односвязные трехмерные многообразия (финитные многообразия без дырок) являются сферами. Эта гипотеза имела особенное значение для ученых, исследующих самое большое трехмерное многообразие — нашу Вселенную. Математическое доказательство этой гипотезы было, тем не менее, совсем не легким. Большинство попыток привело исследователей в тупик, но некоторые послужили источником важных математических открытий, таких как лемма Дена, теорема сферы и теорема о петле, ставших базовыми теоремами современной топологии.
Рис. 32. Замкнутое односвязное трехмерное пространство своеобразно иллюстрирует сфера Эшера
Гипотезу Пуанкаре можно было бы сформулировать еще так: любое замкнутое односвязное трехмерное пространство гомео-
-80-
морфно трехмерной сфере или, иначе говоря, все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Для пояснения этой задачи часто используют наглядный пример: если обмотать яблоко резиновой лентой, то, в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют односвязной фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязная, и предположил, что трехмерная сфера тоже односвязна. Говоря простыми словами, если трехмерная поверхность в чем-то похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Доказать эту гипотезу не могли лучшие математики мира.
Надо вспомнить, что в феноменальном интеллектуальном забеге на «математический приз тысячелетия» участвовали и другие выдающиеся личности. Так, одним из них был видный математик и физик-теоретик китайского происхождения Шин-Тун Яу, которого тоже очень интересовали исследования Гамильтона потоков Риччи. Яу и Гамильтон познакомились в 1970-х годах и вскоре стали близкими друзьями, несмотря на разницу в темпераменте и воспитании.
Рис. 33. Ричард Гамильтон, профессор математики Колумбийского университета (США)
«Гамильтон, сын врача из Цинциннати, опровергал сложившийся стереотип математика как засушенного "ботаника". Дерзкий и непочтительный человек, он ездил верхом, занимался виндсерфингом и менял подружек как перчатки. В его
-81-
жизни математика занимала место еще одного хобби. К сорока девяти годам у него сложилась репутация превосходного лектора, но количество его опубликованных работ было относительно невелико, если не считать базовых статей о потоках Риччи; кроме того, у него практически не было учеников. Перельман прочел статьи Гамильтона, после чего отправился послушать его лекцию в ИПИ. После лекции Перельман поборол свою застенчивость и поговорил с Гамильтоном.