By now the cadavers have been coaxed into a straight-backed dinner-table posture, some duct tape keeping them from slumping. (In coming months, data will be gathered for more realistic positions—legs stretched out in front or angled back under the seat.) A bioengineer holds one of the heads in his hands, like a man in a movie preparing to kiss his co-star. Another strings thin wires to hold the head in that eyes-right position, though not so firmly that it interferes with its movements, which will be captured on video cameras set up in bunkers on all four sides. There’s a protocol for everything: the angle of the cadavers’ knees, the position of their hands on their thighs, the newtons of force with which their boots are laced.
The bucolic calm of the setting belies the pressure everyone’s under to get the bodies prepped on schedule. A butterfly lands, unnoticed, on a bioengineer’s shoulder. Jays converse, or seem to, with the scratchy calls of duct tape being pulled from the roll. The hover and fuss of the scientists exaggerates the abiding stillness of the bodies. They’re like anchormen sitting for their makeup. How nice for them to be outdoors on this fine, crisp autumn day, I find myself thinking. How nice to be in the company of people who appreciate what they’ve agreed to do, this strange job that only they, as dead people, are qualified to do. To feel no pain, to accept broken bones without care or consequence, is a kind of superpower. The form-fitting Lycra costumes, it occurs to me, are utterly appropriate.
Not everyone feels the way I do. In 2007, someone at the Pentagon complained to the Secretary of the Army about a preliminary WIAMan test. “I’ll never forget,” says Randy Coates, WIAMan’s project director until his retirement in 2015. “It was a Wednesday evening, about seven o’clock. I got a call from a colonel over at Aberdeen, where we were going to run the test. He says, ‘The Secretary of the Army has shut down the test.’ We had three cadavers and a team of people who’d been working on them around the clock for days.” As Brockhoff recalls it, “Someone felt their personal beliefs had been affronted.” Her boss went to the Secretary and tried to explain: You can’t build a human surrogate without understanding how the human responds. And then he got mad. To shut down the project at the last moment like that would be not only an extravagant waste of money but a waste of the donors’ bodies. Sometime on Friday, the last possible day before decomposition would have invalidated the results, the test was cleared to go forward—surely the first cadaveric research venture with multiple two- and three-star generals in attendance.
Jason Tice, who oversees WIAMan live-fire testing, pointed out that the sudden, intense scrutiny may have had a silver lining. “It’s been informing leadership about the risks they’re subjecting soldiers to.” In other words, my words, maybe they’ll worry a little less about the dead and a little more about the living.
The downside to the Pentagonal hullabaloo is a newly bloated approval process. The protocol for research involving cadavers has to be approved by the head of the Army Research Laboratory and by ARL’s overseeing organization, the Research, Development and Engineering Command. From there it goes to the commanding general of the Army Medical Research and Materiel Command, which in turn passes it on to the Surgeon General of the Army, who sends it to Congress. Who have two weeks to respond. And if no one along the way takes issue, then and only then can the work begin. The whole process can take as much as six months.
The other fallout is a newly drafted “sensitive use” policy. Potential body donors are required to have given specific consent for research or testing that may involve, as the document lays it out, “impacts, blasts, ballistics testing, crash testing and other destructive forces.”
Who would sign such a thing? Plenty of people. Sometimes, Coates says, it’s people who like the idea of doing something to help keep military personnel safe. It’s a way of serving your country without actually enlisting. I can imagine there are people who, while drawn to the nobility of risking life and limb for a greater cause, would prefer to do so while already dead. Mostly, I’m guessing, it’s the same sorts of people who donate their remains for any other worthy endeavor that relies on the contributions of the insensate. If you’re fine with a medical student dissecting every inch of you to learn anatomy, or with a surgeon practicing a new procedure or trying out a new device on you, then you are probably fine riding the blast rig. I won’t be needing it, is the typical donor attitude toward his or her remains. Do what you have to do to make good from it.
IN WORLD War II they called it deck-slap. Explosions from underwater mines and torpedoes would propel a ship’s decks upward, smashing sailors’ heel bones. Like “combat fatigue” for post-traumatic stress disorder, it was a cavalier toss-off of a name for what would often turn out to be a life-altering condition. The calcaneus (the heel) is tough to break, tougher still to repair. By one early paper’s count, eighty-four different approaches had been tried and discussed in medical journals. Dressings of lint and cottage cheese. “Benign neglect.” “Mallet strikes to break up fracture fragments” followed by “manual molding” to recreate a heel-like shape. Few statistics from the era exist, but one paper cites an amputation rate of 25 percent.
Underbody blasts have brought heels back to the attention of military surgeons. The mallets and lint have been replaced with surgery and pins, but the amputation rate for deck-slap injuries is higher than ever—45 percent, in one recent review of forty cases. Part of the problem has to do with fat, not bone. The calcaneal fat pad keeps the bone from abrading the skin on the underside of the heel. It’s an extremely dense, fibrous fat found nowhere else in the body. (There’s enough squish there to merit the cobbler’s term “breast of the heel.”) Fat pads are frequently damaged in underbody blasts, sometimes badly enough that they have to be removed. Without the padding, the pain of walking is acute. When vitamin A poisoning caused the soles of Antarctic explorer Douglas Mawson’s feet to slough off, he stuffed them in the bottom of his boots like Dr. Scholl’s cushioning insoles. It was the only way he could go on.
Can’t something be put in to replace a damaged fat pad? I spoke to orthopedic surgeon Kyle Potter, who works with these patients at Walter Reed National Military Medical Center. “You mean like a small silicone breast implant?” I wasn’t actually thinking that, but sure.
“No.” Potter pointed out that breast implants aren’t designed to stand up to the forces of heel strike. Walking pounds the calcaneus with 200 percent of a person’s body weight; running, as much as 400 percent. Rupture and leakage would likely be issues. At best, Potter said, it would feel very strange. It would feel like someone stuck a breast implant in your shoe. And who, other than Douglas Mawson, would want that?
In half an hour, some deck-slap will be broadcast live on the video monitors in the bunker. We’re all over there now, while the explosives team readies the bomb. There’s not much else in here. Some microwave ovens for warming engineered soil (“DIRT ONLY,” they are labeled). An earplug dispenser by the door. The plugs are pastel foam, shot through with sparkles. It seems like a lot of manufacturing bother just to be able to call your product Spark Plugs. A wall clock shows the wrong time. “No one can figure out the admin system for the clocks,” a man explains. “We can’t spring forward and fall back.”
We stand and stare at the video feed. A slight breeze moves the trees beyond the tower. Someone with a working timepiece begins a countdown. The explosion sounds muffled, less by earplugs than by distance. We’re a half-mile away. The cadavers appear to be thrown by the blast, but not in an action-movie way. More of a took-a-speed-bump-too-fast way. As with an automotive “crash test,” the language is more disturbing than the actual event. The cadavers in an underbody blast test are blown up, as in upward, not apart.