Выбрать главу

В концепции Странных Петель скрыта идея бесконечности, ибо что такое Петля, как не способ представить бесконечный процесс в конечной форме? Бесконечность играет важную роль во многих картинах Эшера. Копии какой-либо «темы» часто «вставлены» друг в друга, создавая зрительные аналогии с канонами Баха. Несколько таких структур можно увидеть на знаменитой Эшеровской гравюре «Метаморфоза»(рис. 8). Она немного напоминает «Естественно Растущий Канон»: уходя все дальше и дальше от начального пункта, мы внезапно возвращаемся обратно к началу. В черепичных плоскостях «Метаморфозы» уже есть намек на бесконечность; однако другие картины Эшера являют еще более смелые образы бесконечного, На некоторых его рисунках одна и та же тема «звучит» на нескольких уровнях реальности. Скажем, один из планов легко узнается как фантастический, в то время как другой представляет реальность. Сама картина, возможно, содержит только эти два плана; однако само наличие подобной «двусмысленности» приглашает зрителя увидеть самого себя как часть еще одного плана. Сделав этот шаг, он уже околдован предложенной Эшером возможностью бесконечной последовательности планов, где для каждого данного уровня существует высший, более «реальный», и низший, более «фантастичный» уровни. Такая ситуация сама по себе является достаточно удивительной и пугающей. Однако что произойдет, если цепь уровней к тому же будет не линейная, а замкнутая саму на себя, образуя Петлю? Что тогда будет реальностью, а что фантазией? Гений Эшера заключается в том, что он не только придумал, но и сумел изобразить десятки полуреальных, полумифических миров, миров, полных Странных Петель, куда он приглашает войти Зрителя.

Гёдель

Рис. 9. Курт Гёдель

Во всех примерах Странных Петель, которые мы видели у Баха и Эшера, присутствует конфликт между конечным и бесконечным, конфликт, рождающий ощущение парадокса. Интуиция подсказывает, что здесь замешано нечто, связанное с математикой. В самом деле, не так давно — в нашем веке — было найдено математическое соответствие этого явления. Это открытие оказало огромное влияние на развитие логической мысли. Подобно Петлям Баха и Эшера, основанным на простых и привычных образах (музыкальная гамма, лестница), открытие Странных Петель в математических системах, принадлежащее К. Гёделю, берет свое начало в простых и интуитивных идеях. В самой упрощенной форме открытие Гёделя сводится к переводу на язык математики одного из старинных философских парадоксов, так называемого парадокса Эпименида (или парадокса лжеца). Критский философ Эпименид был автором бессмертного суждения: «Все критяне — лжецы». В более прямой форме парадокс звучит так: «Я лгу» или «Это высказывание — ложь». В дальнейшем, говоря о парадоксе Эпименида, я буду иметь в виду последний вариант. Это суждение грубо нарушает обычное представление о том, что все суждения делятся на истинные и ложные, так как если мы на минуту представим, что оно истинно, то тут же увидим, что мы ошиблись, и на самом деле суждение ложно. Точно так же, из предпосылки ложности этого суждения вытекает, что оно должно быть истинным, Попробуйте сами!

Парадокс Эпименида является Странной Петлей «в одну ступеньку», так же, как «Картинная галерея» Эшера. Но какое отношение имеет он к математике? В этом как раз и заключается открытие, сделанное Гёделем. Он попытался использовать математические рассуждения для анализа самих же математических рассуждений. Идея заставить математику заняться «самоанализом» оказалась необычайно продуктивной; теорема Гёделя о неполноте, пожалуй, самое важное её следствие. То, что эта теорема утверждает, и то, как это утверждение в ней доказывается, это разные вещи, которые мы подробно рассмотрим в дальнейшем. Саму теорему можно сравнить с жемчужиной, а метод доказательства — с устрицей, её скрывающей. Мы восхищаемся сияющей простотой жемчужины; устрица же является сложным живым организмом, в чьем нутре зарождается эта таинственно простая драгоценность.