Чтобы повысить четкость картинки, необходимо скомбинировать отклонения, вызываемые рефракцией, с теми, что вызывает сама поверхность линзы. Край округлого стекла направляет лучи, проходящие близко от его центра, к одному фокусу.
Но по мере приближения лучей к краю линзы их расхождение растет. Для того чтобы стеклянная линза формировала изображения без сферической аберрации, ее контур должен иметь вид не окружности, а эллипса или гиперболы. В эпоху Гюйгенса уже существовали технологии, позволявшие производить линзы именно такой формы. Однако природа гораздо изобретательнее, чем человеческий разум, и, например, в глазах трилобитов, морских членистоногих, живших более 300 миллионов лет назад и уже вымерших, были собраны все типы линз, которые впоследствии изображал Декарт. В основе хроматической аберрации лежит другая причина. Проходя через линзу, белый свет распадается на цветной веер, как если бы он проходил через призму. Таким образом, лучи рассеиваются, создавая размытое изображение.
Обложка •Трактата о свете» Гюйгенса.
В этом труде содержатся чертежи линз, которые корректируют сферическую аберрацию.
Закон рефракции был сформулирован уже в 984 году персидским ученым Абу Сахлом в его «Книге о поджигательных инструментах», но никто из европейских астрономов не обратил внимания на этот труд.
В XVII веке закон был открыт вновь по меньшей мере три раза. В 1601 году это сделал Томас Хэрриотт, но он не опубликовал свои результаты.
В 1620 году Виллеброрд Снеллиус (или Снелль) повторил открытие, но рассказал о нем только узкому кругу счастливчиков, состоявших с ним в переписке. Декарт пришел к тем же выводам, что и его предшественники, в конце 1620-х годов. На сей раз он опубликовал статью на эту тему в одном из приложений к своему «Рассуждению о методе». Поскольку Декарт прожил некоторое время в Нидерландах, многие патриоты этой страны, в том числе и Гюйгенс, предполагали, что француз, воспользовавшись рассеянностью Снелля, успел прочитать его письма. Но это обвинение вряд ли можно считать правомерным. В любом случае, закон связан с именем Снелля.
Раньше всех остальных углы, которые образуют лучи света, проходящие сквозь поверхность воды, определил Птолемей. Он заметил, что при увеличении α увеличивается и β, при этом зависимость не была линейной. Птолемей не смог вывести математическую формулу, по которой, имея значение первого угла, можно вычислить значение второго. В своем «Трактате о свете» Гюйгенс использовал рисунок, приведенный выше, чтобы вывести закон о рефракции. На нем изображен луч света, проходящий через слой воздуха от А к О, где он касается горизонтальной поверхности стекла. Его траектория образует угол α с воображаемой вертикальной линией. Пересекая границу сред, луч отклоняется и проходит через стекло по прямой линии под меньшим углом, β, от О к D. Чтобы установить взаимосвязь между α и β, достаточно провести окружность с произвольным радиусом r. Соотношение между длинами отрезков АВ и СО будет постоянным для любой пары углов α и β и составляет примерно 1,52.
Для других пар сред это число будет своим. Так, при переходе от воздуха к воде оно равно 1,33. Соотношение между отрезками можно выразить на основе углов, используя тригонометрическую функцию синуса. По рисунку Гюйгенса,
Таким образом, закон Снелля можно записать как
sin α/sin β = 1,52.
Это уравнение позволяет получить угол преломления любого падающего луча.
Обычно объективы имеют довольно большие размеры. Чем больше поверхность линзы, тем больше света она соберет: это необходимое условие для получения изображения объектов, от которых исходит очень слабый свет, таких как звезды. Окуляр же имеет большую толщину и изгиб, чтобы сократить фокусное расстояние, сильнее отклонить свет и получить большее увеличение. До сих пор мы говорили о линзе определенного типа — двояковыпуклой. Она относится к сферическим линзам, которые представлены на рисунке 15