Выбрать главу
НЕНАСТОЯЩИЙ РЫЦАРЬ И ЯНСЕНИСТ

Французский математик Симеон Дени Пуассон (1781-1840) считал, что в основании теории вероятностей лежала «задача, связанная с азартными играми, которую задал светскому льву суровый янсенист». В результате этого необычного сотрудничества появилась новая область математики. Светским львом был шевалье де Мере (это скорее прозвище, чем титул), а в качестве сурового янсениста выступал Блез Паскаль. Задача же осталась в истории под названием задачи о разделении ставок и звучит следующим образом.

Двое игроков начинают азартную игру, в которой имеют одинаковые шансы на выигрыш. Они делают одинаковые ставки, выигрыш должен достаться победителю — тому, кто первым выиграет определенное количество партий подряд. Если вдруг игру придется прервать, как должны действовать игроки, чтобы разделить деньги наиболее справедливым образом?

Портрет Блеза Паскаля.

На сцену выходит Гюйгенс

Шевалье де Мере вдохновил еще более интенсивные исследования, предложив и смежные задачи. Так же поступили Паскаль, Ферма и многие другие, кому был известен предмет переписки. Не стал исключением и юный Христиан Гюйгенс. Каков был его вклад? Споры об этом ведутся до сих пор. Мы же приведем его собственные слова из письма к ван Схотену, которым открывался его труд «О расчетах в азартной игре»: «Необходимо заявить, с другой стороны, чтобы никто не приписал мне честь первого открытия, которая мне не принадлежит, что некоторые знаменитейшие математики Франции уже давно занимаются такими вычислениями. Однако эти мудрецы, хоть и бросили себе вызов и предложили множество очень сложных задач, держат свои методы решения в тайне. Поэтому мне пришлось самому исследовать весь этот предмет...» На сей раз Гюйгенс не стал тянуть с публикацией работы, как это бывало в других ситуациях, когда он из-за своей медлительности подчас терял право на первенство. Между его путешествием в Париж и изданием книги, которую он отправил ван Схотену в мае 1656 года, прошел всего год. Более полувека она оставалась единственным изданием по теории вероятностей. Таким образом, Гюйгенс заполнил большой пробел по этой теме, и его работа заняла место между первыми пробами Кардано и Галилея и великим трудом Ars Conjectandi («Искусство предположений») Якоба Бернулли.

Константин открыл перед сыном все возможности для того, чтобы тот попал на дипломатическую службу, однако Христиан нашел другое применение полезным связям. Его открытие Титана произвело фурор в Париже, и когда Жан Шаплен стал уговаривать ученого опубликовать его, тот не стал возражать. Тем не менее Гюйгенса терзали сомнения, которые преследовали его на протяжении всей научной карьеры: он считал, что работа была неполной. Разве можно считать трактат о Сатурне законченным, если в нем не раскрыта тайна его удивительной многоликости?

ТРИ ЛИЦА САТУРНА

Телескоп не только помог заложить основы новой модели космоса, но и способствовал появлению неожиданных головоломок. Загадку Сатурна в течение почти полувека пытались отгадать самые выдающиеся астрономы.

В марте 1610 года был опубликован революционный труд Галилея Sidereus nuncius («Звездный вестник»), который, однако, не стал последним в списке достижений пизанского ученого. В августе того же года он написал Кеплеру письмо, в котором содержалась сложная анаграмма: Smaismrmilmepoet aleumibunenugttaviras. Кеплер приложил все силы для расшифровки. Какое же новое небесное чудо открыл Галилей? Он был настоящим охотником за спутниками, а Кеплер создал теорию, согласно которой у Марса их должно было быть два. Кеплер переставлял буквы и так и сяк, пока не получил осмысленную фразу: Salve umbistineum geminatum Martia proles («Привет вам, близнецы, порождение Марса»). Выходит, Галилей увидел те два спутника Марса, которые искал Кеплер? На самом деле немецкий астроном немного схитрил и поменял одну из букв: n у него превратилась в гласную и, которой ему не хватало. Правильным ответом была фраза: Altissimum planetam tergeminum observavi («Отдаленнейшую из планет наблюдал тройную»). Сатурн был наименее яркой планетой и самой далекой из всех, которые можно видеть невооруженным глазом. Более откровенным, нежели с Кеплером, Галилей был с великим герцогом Тосканским Козимо И. Он не испытывал терпение сановника шифрованными посланиями, а ясно рассказал об увиденном: