Выбрать главу

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц как бы разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, на взгляд физика, приобрели довольно простой вид. Взглянув на них — а это делал не один ученый на протяжении многих лет, — можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Рассмотрим простейший пример конвекции. Для этого представим некоторый замкнутый объем жидкости в сосуде с ровным дном, который можно нагревать, и с гладкой поверхностью, подвергающейся в ходе опыта охлаждению. Разница температур между горячим дном и прохладной поверхностью порождает токи жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря тепловой проводимости, как в металлическом бруске, не преодолевая естественное стремление жидкости находиться в покое. К тому же такая система является устойчивой: случайные движения, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно замирают, и жидкость возвращается в состояние покоя.

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкости она расширяется снизу, становится менее плотной, что, в свою очередь, влечет уменьшение ее массы, достаточное, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический завиток, в котором горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной.

Рис. 1.2. Движение жидкости. Когда жидкость нагревают снизу, то в ней обычно образуются цилиндрические завитки (слева). Поднимаясь по одной стенке сосуда и спускаясь затем по противоположной, жидкость теряет теплоту — наблюдается конвекция. В случае продолжения этого процесса возникает нестабильность, влекущая за собой колебания в завитках жидкости, идущие в двух направлениях по всей длине цилиндров. При повышении температуры поток становится бурным и беспорядочным.

Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, — кругообразное перемещение нагретой жидкости, показанное на рис. 1.2. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача; и оба физических процесса взаимодействовали. Подобно любой циркулирующей частице горячей жидкости, жидкое вещество в нашем опыте, взаимодействуя с менее нагретой субстанцией, утрачивает теплоту. Однако, если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию за один цикл перемещений «дно —> поверхность —> дно», и в этом случае в ней могут образоваться завихрения.