Оказалось, что система Лоренца имеет аналоги в реальном мире, даже не отражая полностью процесс конвекции. К примеру, уравнения Лоренца достаточно точно описывают функционирование уже вышедшей из употребления электрической динамо-машины, предшественницы современных генераторов, где ток течет через диск, вращающийся в магнитном поле. В определенных условиях динамо-машина может дать обратный ход. Некоторые ученые, ознакомившись с уравнениями Лоренца, предположили, что, быть может, поведение динамо прольет свет на другой специфический феномен — магнитное поле Земли. Известно, что так называемая гео-динамо-машина давала о себе знать много раз в истории планеты. Интервалы между этими явлениями казались странными и необъяснимыми. Столкнувшись с подобной беспорядочностью, теоретики, как правило, искали решение вне рамок конкретной системы, выдвигая предположения вроде гипотезы метеоритных дождей.
Другой системой, вполне точно описываемой уравнениями Лоренца, является водяное колесо определенного типа, механический аналог вращающихся конвекционных кругов. Вода постоянно льется с вершины колеса в емкости, закрепленные на его ободе, а из каждой емкости она вытекает через небольшое отверстие. В том случае, когда поток воды мал, верхние емкости заполняются недостаточно быстро для преодоления трения. Если же скорость водяной струи велика, колесо начинает поворачиваться под воздействием веса жидкости и вращение становится непрерывным. Однако, коль скоро струя сильна, черпаки, полные воды, некоторое время колеблются внизу, а затем начинают стремиться в другую сторону, таким образом замедляя движение, а затем останавливая колесо; и в дальнейшем оно меняет направление движения на противоположное, поворачиваясь сначала по часовой стрелке, а потом — против нее.
Рис. 1.3. Водяное колесо Лоренца. Первая хаотическая система, обнаруженная Эдвардом Лоренцем, точно соответствует механическому устройству — водяному колесу, которое может вести себя удивительно сложным образом. Вращающееся колесо имеет те же свойства, что и вращающиеся в процессе конвекции цилиндры жидкости: колесо похоже на их поперечные сечения. Обе системы регулируются (потоком воды или теплоты), и обе рассеивают энергию. Жидкость утрачивает теплоту; вода выливается из черпаков колеса. Долгосрочное поведение обеих систем зависит от того, насколько велика управляющая ими энергия. Вода наливается сверху с постоянной скоростью. Если скорость ее небольшая, верхний черпак никогда не становится полным, трение не преодолевается и колесо не поворачивается. (Подобное явление наблюдается и в жидкости: если теплоты недостаточно, чтобы преодолеть вязкость, жидкость останется неподвижной.) С увеличением скорости водяного потока колесо начинает двигаться под тяжестью верхнего черпака (слева) и даже вращаться с постоянной скоростью (в центре). Однако при чрезмерной скорости воды (справа) вращение колеса может стать хаотичным из-за нелинейных воздействий, появившихся в системе. Черпаки, проходя под водяным потоком, наполняются в зависимости от того, насколько быстро вращается колесо. При быстром вращении колеса им не хватает времени, чтобы наполниться. (Так же и жидкости в быстровращающихся конвекционных завитках недостает времени, чтобы поглотить теплоту.) Кроме того, емкости могут начать двигаться в обратную сторону, не заполнившись водой. В результате полные черпаки на движущейся вверх стороне колеса способны замедлить вращение всей системы, а затем вызвать ее поворот в обратную сторону. Фактически Лоренц обнаружил, что в течение длительных периодов времени вращение может менять свое направление несколько раз, никогда не достигая постоянной скорости и никогда не повторяясь каким-либо предсказуемым образом.
Интуиция подсказала Лоренцу, что за длительный период времени при неизменном потоке воды система обретет устойчивое состояние. Колесо будет или равномерно вращаться, или постоянно колебаться в двух противоположных направлениях, покачиваясь через определенные неизменные промежутки времени сначала вперед, затем назад. Но Лоренц обнаружил еще одно обстоятельство.
Три уравнения с тремя переменными полностью описывали движение данной системы. Компьютер ученого распечатал меняющиеся значения этих переменных в следующем виде: 0-10-0; 4-12-0; 9-20-0; 16-36-2; 30-66-7; 54-115-24; 93-192-74. Числа в наборе сначала увеличивались, затем уменьшались по мере отсчета временных интервалов: пять, сто, тысяча…