Выбрать главу
Математическое моделирование биологических систем

Стаи рыб жадно пожирают планктон. Влажные тропические леса кишат неизвестными рептилиями, птицами, скользящими под навесом густой листвы, гудящими, словно частицы в ускорителе, насекомыми. Там, где царит вечная мерзлота, идет трудная борьба за выживание: регулярно, раз в четыре года, стремительно возрастают, а затем убывают популяции мышей-полевок и леммингов. Наш мир — огромная лаборатория природы, создавшей около пяти миллионов взаимодействующих друг с другом биологических видов. Или пятьдесят миллионов? Специалистам точно не известно.

Биологи XX века, обратившись к математике, создали новую дисциплину — экологию, которая, абстрагируясь от реальной жизни сообществ животных и растений, стала рассматривать их как динамические системы. Экологи включили в свой арсенал элементарные инструменты математической физики для описания колебаний численности биологических объектов. Отдельные виды активно размножаются там, где ограничены пищевые запасы, другие находятся в стадии естественного отбора, третьи косит эпидемия. И все это может быть разделено, изолировано друг от друга и препарировано как на практике, так и в умах теоретиков от биологии.

Когда в 70-е годы хаос превратился в обособленную отрасль знания, экологам в ней была отведена специальная ниша. Ведь они тоже прибегали к математическому моделированию, сознавая, впрочем, что их модели лишь слабое приближение к реальному миру, в котором кипит жизнь. Зато осознание этого факта позволяло проникаться важностью идей, которые математики считали не более чем странными. Появление в стабильных системах неупорядоченного поведения означало для эколога отличный результат. Уравнения, применявшиеся в биологии популяций, являлись копиями физических моделей определенных фрагментов Вселенной. Тем не менее предмет исследования биологических наук превосходил сложностью любую физическую задачу. Математические модели биологов, как и те, что создавались экономистами, демографами, психологами, градостроителями, привносили в эти далекие от точности дисциплины элементы строгости и жесткости, однако напоминали карикатуры на реальный мир. Разумеется, стандарты, принятые в разных областях знания, различались: физику система уравнений Лоренца казалась простой, если не сказать примитивной, а для биолога она представляла непреодолимую трудность.

Биологи вынуждены были создать новые методы исследований, несколько по-иному подгоняя математические абстракции под реальные феномены. Физик, анализируя определенную систему (допустим, два маятника, соединенные стержнем), начинает с подбора уравнений: сначала лезет в справочник, а если там не найдется ничего подходящего, строит нужные уравнения исходя из основополагающих теоретических принципов. Зная механизм функционирования обычного маятника и учитывая жесткую связь (стержень), физик попытается решить уравнения, если такое возможно. Биологу же, напротив, никогда не придет мысль теоретически вывести необходимые уравнения, основываясь лишь на знаниях об отдельной популяции животных. Ему необходимо собрать исчерпывающие данные, а затем уж найти уравнения, которые дали бы схожий с реальностью результат. Что получится, если поместить тысячу рыб в пруд с ограниченными пищевыми ресурсами? Что изменится, если выпустить туда еще пятьдесят акул, поедающих по две рыбы в день? Какая судьба постигнет вирус, вызывающий гибель определенного количества животных и распространяющийся с известной скоростью, которая зависит от плотности популяции? Экологи идеализировали подобные задачи, стараясь решить их с помощью уже известных формул.

Зачастую такой подход срабатывал. Биология популяций выяснила кое-что об истории возникновения жизни, об отношениях хищников и их жертв, о том, как влияет изменение плотности населения в регионе на распространение болезни. Если математическая модель показывала, как процесс развивается, достигает равновесия или затухает, экологи могли представить себе обстоятельства, при которых вероятны подобные события.

Одно из весьма полезных упрощений заключалось в моделировании окружающего мира в рамках отдельных временных интервалов. Так, стрелка наручных часов секунда за секундой скачет вперед, вместо того чтобы двигаться непрерывно и незаметно. Дифференциальные уравнения, которые описывают плавно изменяющиеся во времени процессы, трудно решить. Гораздо проще использовать так называемые разностные уравнения, вполне пригодные для описания скачущих от состояния к состоянию процессов. К счастью, большинство популяций животного мира проходит свой жизненный цикл за год. Изменения, происходящие от года к году, зачастую важнее тех, что случаются в сплошной временной среде. В отличие от людей многие насекомые, например, успевают развиться, достичь зрелости, дать потомство и умереть за один сезон, и периоды жизни поколения поэтому не накладываются друг на друга. Чтобы рассчитать, какова будет численность популяции непарного шелкопряда следующей весной или сколько людей зимой заболеют корью, экологу хватает данных текущего года. Столь точная повторяемость цифр, подобная неизменяющейся подписи человека, дает весьма слабое представление о сложности системы, однако для пытливого ума и этой малости достаточно.