Йорк решил донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он написал статью для самого популярного научного издания из тех, где ее могли бы опубликовать, — для «Американского математического ежемесячника». (Будучи математиком, он не сумел облечь свои идеи в ту форму, которую посчитали бы приемлемой физические журналы; лишь много позже он вступил в сотрудничество с физиками.) Работа Йорка сыграла свою роль, однако в конечном счете самой замечательной ее частью стал интригующий заголовок: «Период с тремя волнами заключает в себе хаос». Коллеги советовали ему выбрать более строгую формулировку, однако Йорк упрямо стоял на своем.
Консультируясь с коллегами, Йорк поговорил и со своим другом Робертом Мэем, биологом по специальности. Как порой случается, Мэй проник в биологию «с черного хода». Сын преуспевающего адвоката, он начинал как физик-теоретик в своем родном Сиднее, в Австралии, затем прошел постдокторантуру в Гарварде. В 1971 г. его направили на годичную стажировку в Институт перспективных исследований в Принстоне. Здесь-то он, к удивлению своему, и увлекся биологией.
Даже сейчас биологи стараются по возможности не прибегать к математике. Умы же математического склада больше склоняются к физике, нежели к биологии или общественным наукам. Мэй был исключением из правила. Первоначально его интересы лежали в области абстрактных проблем устойчивости и сложности. Он пытался математически обосновать взаимозависимость этих явлений, существующих в противоборстве и неразрывной связи. Однако вскоре Мэй заинтересовался, казалось бы, несложными вопросами экологии, связанными с поведением отдельных популяций во времени. Невероятно простые модели представлялись ему неизбежным компромиссом. К тому времени, когда Мэй окончательно обосновался на одном из факультетов Принстона (в будущем австралиец станет фактически проректором по науке), он провел уже не один час, изучая варианты логистического разностного уравнения с применением математического анализа и примитивного карманного калькулятора.
Как-то, еще в Сиднее, он написал на доске в коридоре уравнение, чтобы над ним подумали студенты-выпускники. Однако уравнение зацепило его самого. «Господи, что же происходит, когда ламбда начинает превосходить точку аккумуляции?» — с напряжением размышлял Мэй. Он пытался уловить, что случается в момент приближения колебаний коэффициента роста к критической точке и превышении ее. Подставляя различные значения этого нелинейного параметра, Мэй обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего.
Когда задавалось низкое значение параметра, простая модель Мэя демонстрировала устойчивое состояние. При высоком же значении система как бы распадалась на два фрагмента и численность популяции начинала колебаться между двумя величинами. Наконец, при чрезмерном увеличении параметра поведение той же системы становилось непредсказуемым. Но почему? Что происходило на границах различных типов ее поведения? Мэй, как и его выпускники, не мог этого уяснить.
Он рассмотрел простейшее уравнение, причем его компьютерная программа была аналогом программы Смэйла, а сам ученый пытался рассматривать объект целиком — не локально, а глобально. Уравнение было проще всего, что когда-либо изучал Смэйл. Казалось невероятным, что потенциал такой несложной задачи в генерировании порядка и беспорядка неистощим. На самом же деле программа Мэя стала лишь началом. Он рассмотрел сотни значений параметра, задействовав обратную связь и наблюдая, где именно ряд чисел придет к фиксированному значению и случится ли подобное вообще. Он сосредоточивал все больше внимания на рубеже перехода от стабильного состояния к колебательному. Используя уравнение xc = rx (1-x), Мэй увеличивал значение параметра так медленно, как только мог. Если это значение составляло 2,7, численность популяции равнялась 0,6292. По мере увеличения параметра конечный результат так же медленно увеличивался, образуя на графике кривую, плавно поднимавшуюся слева направо.