Выбрать главу

Неожиданно, когда значение параметра превысило 3, линия раздвоилась. Численность воображаемой стаи рыб в предыдущий и последующий годы колебалась между двумя точками, не являясь единой величиной. Начиная с меньшего числа, она возрастала, а затем беспорядочно варьировалась до появления устойчивых отклонений в ту и другую стороны. Рост «холмика» на графике — небольшое увеличение параметра — вновь расщеплял колебания, генерируя ряд чисел, приходивших, в конечном счете, к четырем различным значениям, каждое из которых повторялось с регулярностью раз в четыре года[4]. Теперь компьютерная популяция Мэя увеличивалась и убывала в устойчивом четырехлетнем режиме. Длительность цикла вновь выросла в два раза — сначала с одного года до двух, затем — до четырех. И вновь подобное «круговое» поведение в итоге обнаружило стабильность: какова бы ни была начальная численность популяции, изменения ее укладывались в рамки четырехлетнего цикла.

Рис. 3.2. Удвоение периодов и хаос. Вместо применения отдельных диаграмм для демонстрации изменений в популяциях с различной степенью воспроизводства Роберт Мэй, наряду с другими учеными, использовал так называемую разветвленную диаграмму, чтобы соединить все данные в одном изображении. На диаграмме показано, каким образом изменение одного параметра, в данном случае — способности живущей в естественных условиях популяции к снижению и увеличению числа составляющих ее особей, повлияет на поведение рассматриваемой простой системы в целом. Значения параметра откладывались слева направо по горизонтальной оси; значения конечной численности популяции — по вертикальной. В известном смысле рост значения параметра знаменует перегрузку системы, увеличение в ней нелинейного элемента. Когда это значение невелико (слева), популяция угасает. По мере его роста (в центре) популяция достигает равновесия. Затем, при дальнейшем увеличении параметра, равновесное состояние расщепляется на две ветви, подобно тому как в процессе конвекции дальнейшее нагревание жидкости делает ее нестабильной. Начинаются колебания численности популяции между двумя различными уровнями. Расщепления, или разветвления, происходят все быстрее и быстрее. Далее система становится хаотичной (справа), и численность особей может приобретать бесконечное множество значений.

Построение графика — единственное, что позволяет обнаружить в указанных результатах хоть какой-то смысл и представить их наглядно. Мэй сделал предварительный набросок, чтобы охватить все типы поведения системы при различных параметрах. Для значений параметра, возраставших слева направо, была выбрана горизонтальная ось, для численности популяции отводилась вертикальная. Каждое из значений параметра было представлено точкой, обозначавшей конечный результат после достижения системой равновесия. Слева, там, где значения еще были небольшими, результат являл собой лишь точку. Таким образом, изменения параметра отобразились в виде линии, поднимавшейся слева направо. Когда значение параметра миновало первый критический рубеж, Мэю пришлось вычертить кривую для двух популяций, поскольку линия раздвоилась, образовав искривленную букву Y или подобие вил. Такое расщепление соответствовало переходу популяции от однолетнего цикла к двухлетнему.

По мере дальнейшего роста значения параметра количество точек удваивалось вновь и вновь, что просто ошеломляло ученого, поскольку столь сложное поведение таило в себе обманчивую устойчивость. Мэй назвал наблюдаемый феномен «змеей в джунглях математики». Раздвоения на графике изображались разветвлениями основной линии, и каждое из этих разветвлений означало, что повторяющийся образец далее вновь разделится на части. Популяция, ранее характеризовавшаяся стабильностью, колебалась между двумя различными уровнями каждый второй год. Популяция, менявшаяся в течение двухлетнего цикла, изменялась теперь в течение третьего и четвертого годов, переходя, таким образом, к четырехлетнему периоду.

Подобные разветвления наблюдались на графике все чаще и чаще — 4, 8, 16, 32… — и вдруг внезапно прекратились. После определенной точки аккумуляции периодичность уступала место хаосу, колебаниям, которые никогда не затухали, и поэтому целые зоны на графике были полностью затушеваны. Наблюдая за популяцией животных, описанной этим простейшим уравнением, можно посчитать происходящие год за годом перемены совершенно случайными, привнесенными извне. Тем не менее в самой гуще подобной беспорядочности вновь появляются стабильные циклы. Так, с возрастанием параметра неожиданно обозначается просвет с правильным, хотя и странным периодом, вроде 3 или 7. Модель меняющейся популяции повторяла саму себя в течение трехлетнего или семилетнего цикла. Затем снова, в более высоком темпе, начинались разветвления, которые удваивали период, быстро минуя новые циклы (3, 6, 12… или 7, 14, 28…) и вновь обрываясь с рождением нового хаоса.

вернуться

4

Скажем, при r = 3,5 и начальной численности популяции 0,4 Мэй увидел следующий числовой ряд: 0,4000; 0,8400; 0,4704; 0,8719; 0,3908; 0,8332; 0,4862; 0,8743; 0,3846; 0,8284; 0,4976; 0,8750; 0,3829; 0,8270; 0,4976; 0,8750; 0,3829; 0,8270; 0,5008; 0,8750; 0,3828; 0,8269; 0,5009; 0,8750; 0,3828; 0,8269; 0,5009; 0,8750 и т. д.