Анализ, проделанный Мандельбро, ошеломлял. Посвященные в его результаты испытывали шок от этих умозаключений, не то до боли очевидных, не то до абсурда ложных. Как подметил ученый, на вопрос о длине береговых линий большинство людей дают один из двух стандартных ответов: «Не знаю. Это не по моей части» или «Даже не представляю. Посмотрю в энциклопедии».
Длина любой береговой линии, объяснял Мандельбро, в известном смысле, бесконечно велика. Если подходить с другой стороны, ответ, конечно же, будет зависеть от величины мерки. Рассмотрим один из возможных методов измерения. Топограф, вооружась циркулем, разводит его ножки на расстояние одного ярда и измеряет им линию побережья. Полученный результат будет приблизительным, поскольку циркуль «перешагивает» изгибы и повороты, длина которых меньше ярда. Если топограф разведет ножки не так широко, скажем на один фут, и повторит процедуру, конечный результат окажется больше предыдущего. Будет «схвачено» больше деталей. Чтобы покрыть расстояние, которое ранее измерялось одним шагом циркуля, потребуется уже более трех шагов длиной в один фут. Топограф записывает новый результат и, разведя ножки на четыре дюйма, начинает трудиться заново. Подобный мысленный эксперимент показывает, как можно получить различные результаты при изменении масштаба исследования. Наблюдатель, пытающийся измерить длину береговой линии Великобритании с космического спутника, получит менее точный результат, чем тот, кто не поленится обойти все бухты и пляжи. Последний же, в свою очередь, проиграет улитке, оползающей каждый камешек.
Хотя результат каждый раз будет возрастать, здравый смысл подсказывает, что он неуклонно стремится к некой конечной величине — истинной длине береговой линии. Иными словами, все измерения сойдутся в одной точке. Если бы линия побережья представляла собой одну из фигур Евклидовой геометрии, к примеру круг, применение вышеописанного метода сложения отрезков прямой линии, измеренных каждый раз с большей точностью, оказалось бы успешным. Однако Мандельбро обнаружил, что при бесконечном уменьшении меры измеряемая длина береговой линии неограниченно растет. В бухтах и на полуостровах обнаруживаются мелкие бухточки и мысики — и так вплоть до размеров крошечного атома. Лишь при достижении атомного уровня измерения подойдут к концу. Возможно…
Рис. 4.3. Фрактальный берег. Береговая линия генерирована компьютером. Детали ее не упорядочены. Однако фрактальное измерение постоянно, так что шершавости и неровности выглядят все теми же, независимо от степени увеличения.
Геометрия Евклида, оперирующая длинами, ширинами и высотами, не позволяла постичь сущность неправильных форм, и Мандельбро пришло в голову отталкиваться от идеи размерности, в которой ученые усматривают гораздо больше, чем обыватели. Напомню, что мы живем в трехмерном пространстве: чтобы определить положение точки, надо задать три координаты, например долготу, широту и высоту. Оси трехмерного пространства представляют собой три взаимно перпендикулярные линии, пересекающиеся в начале координат. Это все еще территория Евклидовой геометрии, где пространство характеризуется тремя измерениями, плоскость — двумя, прямая — одним, а точка имеет нулевую размерность.
Абстрактная процедура, позволившая Евклиду постичь одномерные и двухмерные объекты, может быть с легкостью применена и к явлениям повседневной жизни. Так, из чисто практических соображений карта дорог являет собой двухмерный объект — фрагмент плоскости, в котором для адекватного отражения изображаемого задействованы два измерения. Безусловно, реальные дороги трехмерны, как и все остальное, однако их высота столь трудноуловима (и в общем-то не существенна для их эксплуатации), что ее можно не учитывать. Заметим, что карта дорог остается двухмерной даже тогда, когда ее сворачивают. Так и нить всегда имеет лишь одно измерение, а частица или точка не имеют его вовсе.