Каким-то образом по мере движения Вселенной к конечному равновесию в лишенном характерных черт пекле максимальной энтропии появляются удивительные структуры. Вдумчивые физики, соприкасающиеся с действием термодинамики, понимают, насколько волнующим является вопрос, который один из них сформулировал следующим образом: «Как бесцельный поток энергии может привносить жизнь и сознание в наш мир?» Решить проблему помогает весьма расплывчатое понятие энтропии, вполне приемлемое и хорошо определенное для целей термодинамики, когда речь идет о нагреве и температуре, однако чертовски сложное для того, чтобы его можно было ассоциировать с мерой беспорядка. Ученые и так сталкиваются с трудностями, вычисляя меру порядка в воде и стараясь понять, как образуются кристаллические структуры при ее замерзании, сопровождающемся диссипацией энергии. И уж никак не подходит термодинамическая энтропия для определения изменяющейся степени оформленности и бесформенности в процессе создания аминокислот и микроорганизмов, самовоспроизведения растений и животных, сложных информационных систем вроде мозга. Безусловно, эти эволюционирующие островки упорядоченности должны подчиняться второму закону, важным постулатам созидания или чему-то еще.
Природа создает разнообразные объекты. Одни из них упорядочены в пространстве, но беспорядочны во времени, другие — наоборот. Некоторые системы являются фрактальными, обнаруживая структуры, повторяющие самих себя в различных масштабах, другие порождают устойчивые или колеблющиеся состояния. Построение подобных объектов превратилось в раздел физики и прочих естественных наук, позволяя ученым моделировать скопления частиц в кластерах, похожее на извилистые трещины распространение электрических разрядов, рост кристаллов при образовании льда и остывании металлических сплавов. Динамика таких процессов кажется азбучной — изменение формы в пространстве и времени, — но только в наше время появились инструменты, сделавшие возможным ее постижение. И теперь мы вправе спросить у физика: «Почему снежинки не похожи друг на друга?»
Кристаллики льда образуются в турбулентном воздушном потоке, который заключает в себе симметрию и случайность, особую прелесть неопределенности в шести направлениях. По мере того как вода замерзает, у кристаллов появляются тонкие кончики, которые постепенно увеличиваются; их границы становятся неустойчивыми; по краям возникают новые острия. Формирование снежинки подчиняется поразительно утонченным математическим закономерностям. Казалось невозможным предсказать, насколько быстро «вырастет» кончик кристалла, насколько узким он окажется или как часто будет разветвляться. Целые поколения ученых делали наброски и составляли каталоги образов: пластинок и столбцов, кристаллов и поликристаллов, игл и древовидных отростков. За неимением лучшего подхода авторы научных трудов упражнялись в классификации кристаллов.
Теперь уже известно, что рост окончаний кристалла, дендритов, сводится к проблеме нелинейных неустойчивых свободных границ, в том смысле, что модели должны отслеживать динамические изменения сложных извилистых границ. Когда процесс отвердения идет от поверхности внутрь кристалла, как в ледяном желобе, граница, как правило, остается стабильной и плавной; скорость ее формирования определяется тем, насколько стремительно из стенок уходит теплота. Но когда кристалл отвердевает с сердцевины, изнутри, как это происходит в снежинке, когда она захватывает молекулы воды, паря в насыщенном влагой воздухе, процесс становится нестабильным. Любой отрезок контура снежинки, «опередивший» соседние, получает преимущество, захватывая большее количество водяных молекул, и поэтому растет гораздо быстрее — обнаруживается так называемый эффект громоотвода. Образуются новые ответвления, от которых, в свою очередь, отпочковываются более мелкие.
Трудность заключалась в том, чтобы решить, какие из множества задействованных в процессе образования снежинки физических сил следует принять во внимание, а какими вполне можно пренебречь. Долгое время считалось, что наиболее важным является рассеивание теплоты, высвобождающейся при замерзании воды. Но физическая природа тепловой диффузии не могла до конца объяснить те образы, которые наблюдали ученые, рассматривая снежинки под микроскопом или выращивая их в лаборатории. Не так давно был разработан метод, позволяющий учесть иной процесс, а именно поверхностное натяжение. Сердцевина новой модели снежинки являет собой самую сущность хаоса: хрупкий баланс между стабильностью и неустойчивостью, мощное взаимодействие сил атомарного и обычного, макроскопического уровней.