Там, где рассеивание теплоты создает преимущественно неустойчивость, поверхностное натяжение порождает стабильность. Действие этой силы ведет к тому, что вещество приобретает более плавные, похожие на стенки мыльного пузыря, очертания, поскольку для создания грубо очерченных поверхностей требуется энергия. Баланс указанных тенденций находится в зависимости от размера кристалла. В то время как рассеивание является по преимуществу крупномасштабным, макроскопическим процессом, поверхностное натяжение сильнее действует на микроскопическом уровне.
Традиционно допускалось, что для целей практики можно пренебречь действием поверхностного натяжения, поскольку оно очень незначительно. Но это не совсем верно. Происходящее в ничтожных масштабах могло сыграть решающую роль. Именно на микроуровне поверхностные эффекты обнаружили бесконечную чувствительность к молекулярной структуре отвердевающего вещества. В случае со льдом преобладание широко известной шестилучевой формы снежинки диктуется естественной симметрией молекул. К своему изумлению, ученые выяснили, что сочетание стабильности и неустойчивости усиливает микроскопический процесс, создавая почти фрактальное кружево, из которого и получаются снежинки. Причем математическое описание процесса дали не те, кто изучал атмосферу, а физики-теоретики и металлурги. Последними руководил свой интерес: молекулярная симметрия металлов различна, а значит, различна и форма характерных кристаллов, которые определяют прочность сплава. Но математика здесь та же, ибо законы формирования таких моделей универсальны.
Сильная зависимость от начальных условий служит целям созидания, а не разрушения. Пока растущая снежинка летит к земле, с час или около того паря в токах воздуха, ветвление ее лучиков в каждый конкретный момент зависит от таких факторов, как температура, влажность и загрязнение атмосферы. Шесть кончиков одной-единственной снежинки, которая занимает в пространстве не более миллиметра, подвергаются воздействию одной и той же температуры, а поскольку законы роста и развития детерминистские по своей сути, в снежинке появляется близкая к идеалу симметрия. Но природа турбулентного воздушного потока такова, что ни одна снежинка не повторяет маршрут предыдущей. В итоге конечная форма снежного кристалла отображает все изменения погодных условий, действию которых он подвергался, а количество их комбинаций может быть безграничным.
Физики любят повторять, что снежинки — неравновесный феномен. Это продукт дисбаланса в перетекании энергии от одного фрагмента природы к другому. Благодаря такому перетеканию на контуре кристалла появляется острие, потом целое множество ответвлений, которые, в свою очередь, превращаются в сложную, невиданную структуру. Открыв, что неустойчивость такого рода подчиняется всеобщим законам хаоса, ученые смогли применить те же методы ко множеству проблем физики и химии и теперь считают, что подошла очередь биологии. Это отчасти подсознательное ощущение. Наблюдая за компьютерным моделированием роста дендритов, ученые воображают морские водоросли, оболочки клеток, делящиеся и развивающиеся организмы.
К настоящему времени открыто множество путей изучения хаоса, начиная с невидимых микроскопических частиц и заканчивая доступной глазу сложностью. В математической физике теория бифуркаций Файгенбаума и его коллег получила распространение среди ученых Соединенных Штатов Америки и Европы. В абстрактных областях теоретической физики положено начало исследованию новых проблем, таких как еще не решенный вопрос о квантовом хаосе: приемлет ли квантовая механика хаотический феномен механики классической? Изучая движение жидкостей, Либхабер соорудил гигантскую емкость с гелием, в то время как Пьер Хоэнберг и Гюнтер Алерс занялись анализом распространения причудливых волн конвекции. В астрономии специалисты по хаосу создают необычные модели гравитационной неустойчивости, чтобы истолковать происхождение метеоритов — необъяснимое выталкивание астероидов из области Солнечной системы, расположенной за орбитой Марса. Биологи и физиологи используют физику динамических систем для изучения иммунной системы человека с ее миллиардами компонентов и человеческого мозга, обладающего способностью к познанию, воспроизведению и распознаванию объектов. Они также размышляют над эволюцией в надежде отыскать всеобщие механизмы адаптации живых существ.