Галилей настолько подпал под власть своих умопостроений, что увидел упорядоченность, которой не было. По его убеждению, маятник определенной длины не только показывает точное время, но и обнаруживает независимость периода колебаний от угла отклонения. Проще говоря, маятник с большим углом колебаний проходит больший путь, но совершает его быстрее. Другими словами, период колебаний маятника не зависит от его амплитуды. «Если два человека начнут считать число колебаний, и один будет считать те, что имеют широкий угол, а второй — колебания с небольшим углом, обнаружится, что после десятков, даже сотен движений маятников их данные будут полностью совпадать, не различаясь и на доли единицы». Галилей вывел это утверждение эмпирическим путем. Однако, будучи подкреплено теорией, оно приобрело такую убедительность, что до сих пор входит прописной истиной в большинство курсов физики высших школ. Тем не менее данный постулат неверен: упорядоченность, замеченная Галилеем, лишь приблизительна, так как изменяющийся угол движения отвеса привносит в уравнения едва заметный элемент нелинейности. При малых амплитудах погрешность почти не проявляется, зато в опыте, подобном тому, что описан Галилеем, она налицо и даже поддается измерению.
Хотя небольшими эффектами нелинейности можно пренебречь, экспериментаторы быстро осознали, что живут в несовершенном мире. Со времен Галилея и Ньютона поиски упорядоченности в опытах отличались особой основательностью. Любой экспериментатор ищет неизменных величин, но это значит пренебрегать той крошечной долей беспорядочного, что вмешивается в четкую картину результатов. Если химик из одного эксперимента выводит, что постоянное соотношение двух веществ составляет 2,001, из другого — 2,003, а из третьего уже 1,998, весьма неосмотрительным с его стороны будет не подыскать теорию, объясняющую, что истинное соотношение равно два к одному.
Стремясь получить корректные результаты, Галилей также не придавал значения известным ему нелинейным эффектам — трению и сопротивлению воздуха. Последнее является весьма досадным осложнением, той палкой в колесе экспериментатора, которую необходимо убрать, чтобы постичь сущность новой механики. Падает ли птичье перышко так же быстро, как камень? Как показывает опыт, скорость падения их различна. Легенда о том, как Галилео Галилей бросал шары с вершины Пизанской башни, — это история об интуитивном постижении некоего идеального мира, где упорядоченность можно отделить от погрешностей опыта.
Отделив действие силы тяжести на тело определенной массы от действия сопротивления воздуха — что было блестящим достижением научной мысли, — Галилей вплотную приблизился к сути инерции и измерению количества движения. Все же в реальном мире маятники ведут себя как описано в парадигме Аристотеля: они останавливаются.
Закладывая основу грядущей смены парадигм, ученые бились над тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине. Зато утверждение, что эти системы большей частью представляют собой исключения из правил, отнюдь не являлось правдой. Поведение целого класса движущихся объектов: маятников, колеблющихся пружин, струн и гибких стержней — описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат, но почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание — и обнаружится: в динамических системах затаился хаос.
Физик не способен до конца проникнуть в тайны турбулентности, не поняв феномена маятника. До конца осмыслить эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и сверхпроводники Джозефсона. Ход некоторых химических реакций подобен поведению маятника. Нечто похожее прослеживается и в биении сердца. По словам одного ученого, динамика маятника таит в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции».