Рассмотрим качели на детской площадке. Они набирают ускорение, устремляясь вниз, а по мере взлета вверх их скорость падает; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно. Однако, сколь ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не повторяя тот рисунок движения, что наблюдался прежде.
Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. Амплитуда колебаний уменьшается, затем увеличивается. Уменьшается — потому что трение стремится остановить движение, увеличивается — из-за постоянно возникающих внешних толчков. Но даже тогда, когда замедляющаяся, а затем ускоряющаяся система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, начиная с атмосферной, которую «заглушает» трение перемещающихся воздушных масс, воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии.
Впрочем, непредсказуемость поведения маятников не была причиной, подвигшей физиков и математиков снова всерьез взяться за их изучение в 60-70-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является процессом созидания некой сложности. Перед взором исследователей представали причудливые объекты, устойчивые и не совсем, имеющие пределы и безграничные, но всегда обладавшие очарованием жизни. Именно поэтому ученые, словно дети, играли в эти игрушки.
Играли не только они одни. На прилавках сувенирных магазинов появилась забавная безделица, получившая название «космические шары» или «небесная трапеция». Она представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Т, крепится на свободном конце маятника. Центром тяжести маятника служит третий шар, более массивный, чем первые два. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, как нижний шарик приближается к основанию, игрушка получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое движение напоминает хаос.
Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, качается в любом направлении, не ограничиваясь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинами А и В, потом движение перейдет на сторону ВС, и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгивает к вершине А. Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов — там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса на практике предсказать невозможно.
Ученые, занимающиеся динамикой, полагают, что описать поведение системы с помощью уравнений значит понять ее. Что может лучше уравнений передать существенные черты системы? Уравнения, передающие движение качелей или рассмотренных выше игрушек, устанавливают связь между углом колебаний маятника, скоростью, преодолеваемым трением и движущей силой. Однако добросовестный исследователь обнаруживает, что он не в состоянии ответить на простейшие вопросы о будущих состояниях системы в силу того, что в уравнениях присутствует крошечная доля нелинейности. С помощью компьютера можно смоделировать эти состояния, бегло просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах.