Хотя гипотеза Смэйла не подтвердилась, она дала новое направление его исследованиям сложных динамических систем. Ряд математиков по-новому оценили возможности осциллятора ван дер Поля. Смэйл приложил их выводы к неизвестной области. Единственным его осциллографом был мозг, но этот мозг довели до совершенства годы изучения топологической Вселенной. Смэйл досконально разобрался в спектре активности осциллятора, в его, по выражению физиков, фазовом пространстве. Любое состояние системы, зафиксированное в определенный момент времени, раскрывалось в одной точке фазового пространства. Все данные о положении или скорости системы содержались в координатах указанной точки. По мере изменения системы точка меняла свои координаты в фазовом пространстве, вычерчивая траекторию.
Фазовое пространство простой системы, вроде маятника, вероятно, представляет собой прямоугольник. Угол колебаний маятника в заданный момент времени определяет положение точки на оси восток — запад, а его скорость — на оси север — юг. Для маятника, стабильно качающегося взад и вперед, траектория в фазовом пространстве напоминает петлю, закручивающуюся вновь и вновь, по мере того как система раз за разом проходит через те же состояния.
Рис. 2.1. Построение изображений в фазовом пространстве. Традиционные временные последовательности (вверху) и траектории в фазовом пространстве (внизу) используются как два вида наглядного отображения одних и тех же данных и поведения системы в течение длительного периода времени. Первая (слева) система сходится в одной точке фазового пространства, что подразумевает стабильное состояние. Вторая периодически повторяет саму себя, образуя циклическую орбиту. Третья также обнаруживает периодическое повторение, но в более сложном, «вальсовом» ритме, демонстрируя цикл с тремя волнами. Четвертая хаотична.
Вместо того чтобы наблюдать за траекторией, Смэйл сосредоточился на изучении целостного пространства в момент изменения системы, например во время увеличения движущей силы. При этом он сконцентрировал свои размышления на некой геометрической сущности, абстрагировавшись от сути физической. Смэйл анализировал топологические трансформации в фазовом пространстве, т. е. такие преобразования, как растяжение и сжатие. Иногда эти преобразования несли в себе прямой физический смысл. Так, рассеивание и потеря энергии на трение наглядно отображались тем, что очертания системы в фазовом пространстве сжимались, словно опадающий воздушный шар, сокращаясь в итоге до точки, в которой система окончательно останавливалась. Смэйл понял, что для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве необходимо использовать новый комплексный набор трансформаций, и быстро превратил идею о зрительном представлении глобального поведения системы в неизвестную ранее модель. Его изобретение — овладевший умами образ хаоса — представляло собой структуру, известную под названием подковы.
Рис. 2.2. Подкова Смэйла. Такая топологическая трансформация заложила весьма простую основу толкования хаотичных свойств динамических систем: пространство растягивается в одном направлении, сжимается в другом, а затем перегибается. При повторении операции образуется нечто вроде структурированного беспорядка, подобного тому, который мы получаем, сворачивая пирожные из слоеного теста. Две точки, оказавшиеся рядом в конце преобразований, вначале могли находиться далеко друг от друга.
Чтобы представить себе упрощенный вариант подковы Смэйла, вообразите прямоугольник, а затем совместите верхнюю и нижнюю его стороны. Получится брусок, который надо согнуть буквой «С», а потом выровнять концы, чтобы получилась подкова. Подкову нужно встроить в новый прямоугольник и повторить преобразования: сжатие, свертывание и выравнивание.
Описанная выше процедура напоминает работу кондитера, который ловко растягивает сладкую жирную массу, сворачивает ее вдвое, вновь вытягивает, и так снова и снова, пока конфета не приобретет изящную продолговатую форму и сахарные завитки внутри нее не станут повторять друг друга самым причудливым образом. Смэйл создал свою подкову, минуя несколько стадий топологического преобразования. Отвлекшись от математики, можно отметить, что подкова — точный и зримый образ «сильной зависимости от начальных условий», которую Лоренц откроет несколькими годами позже. Выберите две соседние точки в начальном пространстве — и не угадаете, где именно они окажутся после сгибания и скручивания пространства.