Выбрать главу

Работая в институте, Йорк наслаждался возможностью трудиться над вопросами, выходящими за привычные рамки, и постоянно консультироваться со множеством представителей других дисциплин. Как-то одному из них, посвятившему себя изучению динамики жидкостей, попалась на глаза статья Лоренца «Детерминистский непериодичный поток», написанная в 1963 г. С тех пор минуло девять лет. Будучи очарован работой Лоренца, физик вручал копии статьи всем, до кого удавалось дотянуться. В числе прочих копию получил и Йорк.

Статья обладала необъяснимой магией. Это было то самое, что Йорк бессознательно, но давно искал. Математик мог бы назвать статью шокирующей; хаотическая система не вписывалась в весьма оптимистичную первоначальную классификацию Смэйла. Йорк разглядел в работе Лоренца не только математику, но и живую физическую модель — картину движущейся жидкости — и сразу же понял: нужно, чтобы физики увидели и оценили ее. Его кумир Смэйл повернул математику лицом к физическим проблемам, хотя язык математики не годился еще для свободного общения, и Йорк хорошо это понимал. Вот если бы все известные науки, потеснившись, приняли в свои ряды новобранца — дисциплину, удачно совместившую в себе черты физики и математики… Но увы, хотя работа Смэйла несколько сократила пропасть между двумя областями знания, математики и физики говорили еще на разных языках. Как заметил однажды физик Марри Гелл-Ман, «сотрудникам факультета знакомы личности, которые среди математиков выставляют себя знающими физиками, а среди физиков — опытными математиками. Совсем неплохо, но нам такого не надо». Образ мысли и действий представителей двух профессий был слишком различен: математики доказывали теоремы путем логических рассуждений, физики — исключительно путем экспериментов. Различны были и объекты исследования.

Смэйла вполне мог удовлетворить следующий пример: выбрав число, например дробь больше нуля, но меньше единицы, удвоить его, а затем, отбросив целую часть, находящуюся слева от запятой, повторить процедуру. Поскольку большинство чисел иррациональны, результатом действий станет последовательность случайных чисел. Физик не увидит здесь ничего, кроме игры ума, очередной математической причуды, совершенно бессмысленной, слишком простой и чересчур абстрактной, чтобы из нее можно было извлечь какую-то пользу. Но Смэйл тем не менее чувствовал, что такой математический прием отвечает сущности многих физических систем.

Предел мечтаний физика — дифференциальное уравнение, которое можно записать в простой форме. Ознакомившись со статьей Лоренца, которая ждала своего часа, Йорк увидел, что подобное поймут и физики. Он направил копию Смэйлу, проставив на видном месте свой адрес, чтобы получить статью обратно. Смэйл изумился, обнаружив, что безвестный метеоролог десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной. И, сняв множество копий со статьи, Смэйл положил тем самым начало легенде об открытии Йорком работы Лоренца — ведь на каждой копии, появлявшейся в Беркли и других местах, стоял адрес Йорка.

Йорк же чувствовал, что физиков учили не видеть хаос. Между тем в повседневной жизни замеченная Лоренцем «сильная зависимость от начальных условий» таится всюду. Утром человек выходит из дома на тридцать секунд позже обычного. Скинутый сверху цветочный горшок пролетает в нескольких миллиметрах от его затылка, а затем человека сбивает грузовик. Или менее грустный пример: пропустив автобус, который останавливается около его дома каждые десять минут, он опаздывает на поезд, курсирующий с часовыми интервалами. Небольшие изменения в дневном графике каждого чреваты далеко идущими последствиями. Бейсболист отбивает подачу одним и тем же отработанным движением, но результаты разные, поскольку в бейсболе все решают дюймы. В науке дела обстоят по-другому.