Насколько падает Луна за секунду, нетрудно сообразить потому, что вы знаете размеры орбиты, знаете, что Луна обходит Землю за месяц и, подсчитав, сколько она проходит за секунду, сможете узнать, насколько круг лунной орбиты отклоняется за секунду от прямой линии, по которой бы летела Луна, если бы Земля ее не притягивала. Эта величина немногим больше 1,25 мм. Луна в 60 раз дальше от центра Земли, чем мы (мы удалены от центра Земли на 6400 км, а Луна - на 378000 км). Значит, если закон обратно пропорциональной зависимости от квадрата расстояния правилен, то предмет у поверхности Земли при падении должен пролетать за секунду 1,25 мм Х 60 2, потому что на орбите Луны предметы должны притягиваться в 60 Х 60 раз слабее. Итак, 1,25 мм Х 3600 - это примерно 5 м. Измерения Галилея показали, что, падая у поверхности Земли, тела пролетают в секунду 5 м. Это означало, что Ньютон встал на верную дорогу, потому что, если раньше было известно два независимых факта: во-первых, период вращения Луны и величина ее орбиты и, во-вторых, расстояние, которое пролетает падающее тело у поверхности Земли, то теперь эти факты оказались тесно связанными. Эта увлекательная проверка показала, что с теорией Ньютона все обстоит благополучно.
Затем Ньютон сделал еще несколько предсказаний. Ему удалось вычислить, какую форму должна иметь орбита, если закон обратной пропорциональности квадрату расстояния справедлив; он нашел, что орбита должна быть эллипсом, и получил третье подтверждение своего закона. Вдобавок ему удалось объяснить и некоторые другие явления.
Во-первых, приливы. Приливы вызваны тем, что Луна сама притягивает Землю и ее океаны. Так думали раньше, но вот что оказалось необъяснимым: если Луна притягивает воды и поднимает их над ближней стороной Земли, то за сутки происходил бы лишь один прилив - прямо под Луной (рис. 4). На самом же деле, как мы знаем, приливы повторяются примерно через 12 часов, т.е. два раза в сутки. Была и другая школа, которая придерживалась противоположных взглядов. Ее приверженцы считали, что Луна притягивает Землю, а вода за ней не успевает. Ньютон первым понял, что происходит на самом деле: притяжение Луны одинаково действует на Землю и на воду, если они одинаково удалены. Но вода в точке уближе к Луне, чем Земля, а в точке х- дальше. В увода притягивается к Луне сильнее, чем Земля, а в х- слабее. Поэтому получается комбинация двух предыдущих картинок, которая и дает двойной прилив.
Фактически Земля делает то же самое, что и Луна - она движется по кругу. Сила, с которой Луна действует на Землю, уравновешивается - но чем? Как Луна ходит по кругу, чтобы уравновесить притяжение Земли, точно так же ходит по кругу и Земля. Обе они обращаются вокруг общего центра, и силы на Земле уравновешены так, что вода в хпритягивается Луной слабее, в у- сильнее и в обоих местах вода вспучивается. Так были объяснены приливы и почему они происходят дважды в сутки.
Прояснилось и многое другое: как Земля стала круглой из-за того, что все ее части притягивали друг друга, как она оказалась не совсем круглой из-за того, что вращается и наружные части ее стремятся прочь сильнее, чем внутренние, почему шарообразны Луна и Солнце и т.д.
С развитием науки измерения производились все точнее и подтверждения ньютоновских законов становились все более убедительными. Первые точные измерения касались спутников Юпитера. Казалось бы, если тщательно наблюдать за их обращением, то можно убедиться, что все происходит согласно Ньютону. Однако выяснилось, что это не так. Спутники Юпитера появлялись в расчетных точках то на 8 мин раньше, то на 8 мин позже, чем полагалось бы согласно законам Ньютона. Обнаружилось, что они опережают график, когда Юпитер сближается с Землей, и отстают, когда Юпитер и Земля расходятся, - очень странное явление.
Рёмер [3], убежденный в правильности закона тяготения, пришел к интересному выводу, что для путешествия от спутников Юпитера до Земли свету требуется определенное время, и, глядя на спутники Юпитера, мы видим их не там, где они находятся сейчас, а там, где они были несколько минут назад - столько минут, сколько требуется свету, чтобы дойти до нас. Когда Юпитер ближе к нам, свет приходит быстрее, а когда Юпитер дальше - свет идет дольше; поэтому Рёмеру пришлось внести поправку в наблюдения на эту разницу во времени, т.е. учесть, что иногда мы делаем эти наблюдения раньше, а иногда позже. Отсюда ему удалось определить скорость света. Так было впервые установлено, что свет распространяется не мгновенно.
История этого открытия показывает, что если какой-то закон верен, то при его помощи можно открыть другой закон. Когда мы убеждены в правильности некоторого закона, но что-то в наших наблюдениях с ним не вяжется, это может указать нам на другое, неизвестное явление. Если бы мы не знали закона тяготения, потребовалось бы гораздо больше времени, чтобы определить скорость света, ибо мы не знали бы, чего ожидать от спутников Юпитера. Этот процесс разросся в целую лавину открытий. Каждое новое открытие давало толчок следующему, и лавина эта движется вот уже 400 лет - в наши дни так же быстро, как и прежде.
Возникла еще одна проблема: планеты не должны двигаться по эллипсам, потому что, согласно законам Ньютона, они не только притягиваются Солнцем, но и притягивают друг друга - слабо, но все же притягивают, и это слегка изменяет их движение. Уже были известны большие планеты - Юпитер, Сатурн, Уран - и было подсчитано, насколько они должны отклоняться от своих совершенных кеплеровских орбит-эллипсов за счет взаимного притяжения. Когда эти расчеты были закончены и проверены наблюдениями, обнаружилось, что Юпитер и Сатурн движутся в полном согласии с расчетами, а с Ураном творится что-то странное. Казалось бы, еще повод усомниться в законах Ньютона; но главное - не падать духом! Два человека, Адаме и Леверье {5}, которые выполнили эти расчеты независимо друг от друга и почти одновременно, предположили, что на движение Урана влияет невидимая планета. Они послали письма в обсерватории с предложением: "Направьте ваш телескоп туда-то и вы увидите неизвестную планету". "Что за чепуха,- сказали в одной из обсерваторий,- какому-то мальчишке попала в руки бумага и карандаш, и он указывает нам, где искать новую планету". В другой обсерватории дирекция была легче на подъем - и там открыли Нептун!
Позже, в начале XX века, выяснилось, что движение планеты Меркурий не совсем правильно. Это вызвало большие волнения и было объяснено только тогда, когда Эйнштейн доказал, что законы Ньютона не совсем точны и надо их несколько изменить.
Рис.5. Три фотографии двойной звезды, сделанные 21.06.1908, 10.09.1915 и 10.07.1920.
Совершенно ясно, что они притягивают друг друга и движутся по эллипсам так, как это и должно происходить. Здесь отмечено последовательное положение звезд в различные моменты времени; звезды движутся по часовой стрелке. Все это кажется прекрасным до тех пор, пока мы не замечаем, что центр орбиты расположен не в фокусе эллипса, а несколько смещен. Значит, что-то неправильно в законе? Нет, просто орбита сфотографирована не анфас, мы смотрим на нее под острым углом. Если вы нарисуете на бумаге эллипс, отметите его фокус и будете смотреть на бумагу под острым углом, то увидите проекцию этого эллипса и фокус проекции не будет совпадать с фокусом самого эллипса. Орбита наклонена в пространстве и именно поэтому выглядит так странно.
А что происходит на больших расстояниях? Эта сила действует между двумя звездами; но будет ли она действовать на расстояниях, которые не в два и не в три, а во много раз превосходят диаметр Солнечной системы? На рис. 7 показан объект, который в 100 000 раз больше, чем Солнечная система; это огромное скопление звезд. Большое белое пятно - не сплошное; оно кажется таким, потому что наши несовершенные инструменты не позволяют разглядеть в нем мелкие детали. На самом же деле оно состоит из очень-очень мелких пятнышек - обычных звезд, и вовсе не слипшихся, а сильно удаленных друг от друга, движущихся взад и вперед в этом большом шаровом скоплении. Это одно из самых прекрасных явлений на небе-такое же прекрасное, как морские волны и закаты. Размещение материала в скоплении совершенно ясно указывает, что звезды в. нем также, связаны взаимным тяготением. Зная примерно расстояние до этой галактики и размещение материала в ней, мы можем приблизительно определить закон сил. действующих между звездами,- приблизительно определить, что и здесь они обратно пропорциональны квадрату расстояния. Точность этих измерений и выкладок, конечно, не может сравниться с точностью, какую мы получаем в Солнечной системе.