Рис. 7.Шаровое скопление M15 (NGC 7078) в созвездии Пегаса. Это скопление необычно тем, что в своей северо-восточной части содержит маленькую планетарную туманность (K 648). Скопление M15 - сильный источник рентгеновского излучения. Оно удалено на 34 тысячи световых лет (10.5 кпс) и имеет диаметр в 130 световых лет. Фотография сделана 4-метровым телескопом Мэйэлла Национальной обсерватории в Китт-Пик.
Тяготение действует и на еще больших расстояниях. Наше звездное скопление выглядит незаметной точкой на рис. 8, где показана типичная галактика. И опять-таки ясно, что эта галактика держится как единое целое благодаря какой-то силе. А никакой другой силы, кроме тяготения, здесь предположить нельзя. Когда мы переходим к таким масштабам, мы уже не можем проверить справедливость ньютоновского закона. Но несомненно, что в таких гигантских звездных образованиях - в этих галактиках, которые простираются на 50-100 тысяч световых лет, тогда как расстояние от Солнца до Земли составляет только 8 световых минут, - даже на таких огромных расстояниях действуют силы тяготения.
Рис. 8.Спиральная галактика типа Sc в созвездии Большой Медведицы M101 (NGC 5457) удалена от нас на расстояние 15 млн. световых лет. Гигантское звездное колесо, напоминающее формой и размером Млечный Путь, открывается нашему взгляду почти сверху, причем темные волокна в рукавах - прослойки пыли. Фотография получена с помощью 4-метрового телескопа Мэйэлла Национальной обсерватории в Китт-Пик.
Рис. 9 свидетельствует о том, что силы тяготения простираются еще дальше. Это так называемое скопление галактик. Все они собраны в один ком, как и звезды, только этот ком составлен не из звезд, а из "крошек" вроде той, которую вы видите на рис. 8.
Рис. 9.На этой фотографии, полученной с помощью 4-метрового телескопа Национальной обсерватории в Китт-Пик, показано гигантское скопление галактик (Абель 2218) на расстоянии 2 млрд. световых лет (красное смещение 0,2), которое выглядит желтоватым. Сильное гравитационное поле этого скопления является причиной искажения изображений более удаленных (голубоватых) скоплений и превращения их в систему концентрических дуг. Уровень искажения позволяет сделать вывод, что скопление Абель 2218 имеет по крайней мере в десять раз большую массу, чем можно приписать видимым галактикам.
Это чуть ли не одна сотая, а может быть, и десятая часть известной нам Вселенной, где мы имеем прямые свидетельства существования сил тяготения. Таким образом, притяжение Земли не имеет границ, хотя в газетах и пишут по рой, что такое-то тело освободилось от оков земного притяжения. Притяжение становится все слабее и слабее - оно обратно пропорционально квадрату удаления от Земли: каждый раз, когда расстояние до Земли увеличивается вдвое, сила тяготения падает вчетверо и в конце концов теряется в переплетении более сильных полей тяготения других звезд. Вместе с соседними звездами Земля притягивает другие звезды, и они образуют Галактику. Галактика притягивает другие галактики и вместе они образуют скопление - систему галактик. Таким образом, притяжение Земли нигде не кончается, но убывает медленно и строго закономерно, может быть. до самых пределов Вселенной.
Закон тяготения отличается от многих других законов. Ясно, что он играет большую роль в механике Вселен ной. И покуда речь идет о Вселенной, этот закон всюду находит практическое применение. Но на Земле, как ни странно, закон тяготения дает нам гораздо меньше практически полезных сведений, чем другие законы физики. Только в этом смысле не типичен выбранный мной пример.
Кстати говоря, невозможно выбрать такой пример, который был бы типичен во всех отношениях. Это удивительное свойство нашего мира.
Единственные практические приложения этого закона, которые мне приходят на ум, это пожалуй, некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Да, и еще одно современное приложение: закон Ньютона позволяет заблаговременно вычислять положения планет астрологам, которые публикуют свои гороскопы в журналах. Поистине мы живем в удивительном мире: все новейшие достижения человеческой мысли используются только для того, чтобы разнообразить чепуху, существующую вот уже две тысячи лет.
Рис. 10.Газовые туманности в созвездии Лебедя
Теперь я расскажу, где именно тяготение существенно влияет на жизнь Вселенной. Один из интересных в этом смысле примеров - образование звезд. На рис. 10 показаны газообразные туманности внутри нашей Галактики. Это не скопление звезд, это газ. Черные пятнышки - места, где газ сжался и уплотнился за счет притяжения. Процесс этот, может быть, начинается с ударных волн, но потом благодаря притяжению газ стягивается все плотнее и плотнее и образуются большие шаровые тучи газа и пыли. По мере уплотнения они разогреваются все больше и больше, начинают светиться и превращаются в звезды.
Звезды рождаются из газа, который чересчур сжался под действием притяжения. Иногда звезды взрываются, выбрасывают пыль и газы, потом пыль и газы снова собираются и снова образуют звезды - все это похоже на вечное движение.
Как я уже сказал, тяготение действует на огромных расстояниях. Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Можем ли мы сами поставить такой опыт, а не гадать, глядя на небо, притягиваются ли планеты?
Такой прямой опыт сделал Кавендиш [4]при помощи прибора, который показан на рис. 11. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара, как показано на рисунке. Притяжение шаров слегка перекрутит нить - слегка, потому что силы притяжения между обычными предметами очень слабы. Силу притяжения между двумя шарами можно измерить. Кавендиш назвал свой опыт "взвешиванием Земли". Педантичный и осторожный преподаватель наших дней не позволит студентам так выразиться; нам пришлось бы сказать "измерение массы Земли". При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G.
Вы скажете: "Взвешивание Земли представляет собой почти такую же задачу. Мы знаем силу притяжения, знаем массу объекта, который притягивается, и знаем, насколько он удален, но мы не знаем ни массы Земли, ни постоянной тяготения, а только их произведение". Измерив постоянную и зная, как Земля притягивает предметы, мы сможем вычислить ее массу.
Этот опыт впервые позволил косвенно определить, насколько тяжел, массивен шар, на котором мы живем. Результат его невольно вызывает удивление, и я думаю, что именно поэтому Кавендиш назвал свой опыт "взвешиванием Земли", а не "определением постоянной уравнения тяготения". Между прочим, он одновременно взвешивал и Солнце и все остальное, потому что притяжение Солнца определяется точно таким же способом.
Интересно было проверить закон тяготения еще с одной стороны: пропорционально ли притяжение массе. Мы знаем, что ускорение прямо пропорционально действующей силе и обратно пропорционально массе. Поэтому если сила притяжения в точности пропорциональна массе, то два тела с разной массой должны одинаково менять свою скорость в поле тяготения. Иначе говоря, два различных предмета в вакууме, независимо от их массы, за одинаковое время пролетят по направлению к Земле одинаковые расстояния. Такие опыты ставил еще Галилей на падающей башне в Пизе.