На воздухе сероводород сгорает:
2H2S + 3O2 = 2H2O + SO2 (при избытке кислорода).
Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:
H2S + Pb2 + 2H2O = PbS + 2H3O
Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.
Кроме сероводорода, сера образует и другие сульфаны H2Sn, например, дисульфан H2S2, аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS2.
В соответствии с валентными возможностями своих атомов сера образует два оксида: SO2 и SO3. Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты.
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:
Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O;
2KBr + 3H2SO4 = 2KHSO4 + Br2 + SO2 + 2H2O.
Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией.
Будучи двухосновной кислотой, серная кислота образует два ряда солей: средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Качественной реакцией на сульфат-ион является осаждение исследуемым раствором сульфата бария из подкисленного соляной кислотой раствора хлорида бария.
ПАССИВАЦИЯ
1.Составьте структурные формулы а) сероводорода, б) дисульфана, в) пирита, г) сульфата алюминия, д) гидросульфата аммония.
2.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения. 3.Составьте уравнения реакций, данных в тексте параграфа описательно.
4.Составьте уравнения реакций, характеризующих химические свойства а) серы, б) сероводорода (и сероводородной кислоты), в) диоксида серы и г) серной кислоты.
Химические свойства соединений серы.
15.4. Производство серной кислоты
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.
Диоксид серы получают сжигая в кислороде серу или различные сульфиды:
S + O2 = SO2;
4FeS2 + 11O2 = 2Fe2O3 + 8SO2.
Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция
2SO2 + O2 2SO3 + Q
обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:
SO3 + H2SO4 = H2S2O7.
Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.
1.Cоставьте структурные формулы
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.
Глава 16. Элементы IIIA, IVA и VA групп
16.1. Общая характеристика элементов IIIA, IVA и VA групп
IIIA |
IVA |
VA |
B Бор 0,776 |
C Углерод 0,620 |
N Азот 0,521 |
Al Алюминий 1,312 |
Si Кремний 1,068 |
P Фосфор 0,919 |
Ga Галлий 1,254 |
Ge Германий 1,090 |
As Мышьяк 1,001 |
In Индий 1,382 |
Sn Олово 1,240 |
Sb Сурьма 1,193 |
Tl Таллий 1,319 |
Pb Свинец 1,215 |
Bi Висмут 1,295 |
Состав этих трех групп естественной системы элементов показан на рисунке 16.1. Здесь же приведены значения орбитальных радиусов атомов (в ангстремах). Именно в этих группах наиболее четко прослеживается граница между элементами, образующими металлы (орбитальный радиус больше 1,1 ангстрема), и элементами, образующими неметаллы (орбитальный радиус меньше 1,1 ангстрема). На рисунке эта граница показана двойной линией. Не следует забывать, что граница эта все же условна: алюминий, галлий, олово, свинец и сурьма безусловно амфотерные металлы, но и бор, германий, мышьяк проявляют некоторые признаки амфотерности.
Из атомов элементов этих трех групп в земной коре чаще всего встречаются следующие: Si (w = 25,8 %), Al (w = 7,57 %), P (w = 0,090 %), C (w = 0,087 %) и N (w = 0,030 %). Именно с ними вы и познакомитесь в этой главе.
Общие валентные электронные формулы атомов элементов IIIA группы – ns 2 np 1 , IVA группы – ns 2 np 2 , VA группы – ns 2 np 3 . Высшие степени окисления равны номеру группы. Промежуточные на 2 меньше.