Encyclopædia Britannica, Inc. Medicine
The Greeks not only made substantial progress in understanding the cosmos but also went far beyond their predecessors in their knowledge of the human body. Pre-Greek medicine had been almost entirely confined to religion and ritual. Disease was considered the result of divine disfavour and human sin, to be dealt with by spells, prayers, and other propitiatory measures. In the 5th century bce a revolutionary change came about that is associated with the name of Hippocrates. It was Hippocrates and his school who, influenced by the rise of natural philosophy, first insisted that disease was a natural, not a supernatural, phenomenon. Even maladies as striking as epilepsy, whose seizures appeared to be divinely caused, were held to originate in natural causes within the body.
The height of medical science in antiquity was reached late in the Hellenistic period. Much work was done at the museum of Alexandria, a research institute set up under Greek influence in Egypt in the 3rd century bce to sponsor learning in general. The heart and the vascular system were investigated, as were the nerves and the brain. The organs of the thoracic cavity were described, and attempts were made to discover their functions. It was on these researches, and on his own dissections of apes and pigs, that the last great physician of antiquity, Galen of Pergamum, based his physiology. It was, essentially, a tripartite system in which so-called spirits—natural, vital, and animal—passed respectively through the veins, the arteries, and the nerves to vitalize the body as a whole. Galen’s attempts to correlate therapeutics with his physiology were not successful, and so medical practice remained eclectic and a matter of the physician’s choice. Usually the optimal choice was that propounded by the Hippocratics, who relied primarily on simple, clean living and the ability of the body to heal itself. Science in Rome and Christianity
The apogee of Greek science in the works of Archimedes and Euclid coincided with the rise of Roman power in the Mediterranean. The Romans were deeply impressed by Greek art, literature, philosophy, and science, and after their conquest of Greece many Greek intellectuals served as household slaves tutoring noble Roman children. The Romans were a practical people, however, and, while they contemplated the Greek intellectual achievement with awe, they also could not help but ask what good it had done the Greeks. Roman common sense was what kept Rome great; science and philosophy were either ignored or relegated to rather low status. Even such a Hellenophile as the statesman and orator Cicero used Greek thought more to buttress the old Roman ways than as a source of new ideas and viewpoints.
The spirit of independent research was quite foreign to the Roman mind, so scientific innovation ground to a halt. The scientific legacy of Greece was condensed and corrupted into Roman encyclopaedias whose major function was entertainment rather than enlightenment. Typical of this spirit was the 1st-century-ce aristocrat Pliny the Elder, whose Natural History was a multivolume collection of myths, odd tales of wondrous creatures, magic, and some science, all mixed together uncritically for the titillation of other aristocrats. Aristotle would have been embarrassed by it.
At its height Rome incorporated a host of peoples with different customs, languages, and religions within its empire. One religious sect that proved more significant than the rest was Christianity. Jesus and his kingdom were not of this world, but his disciples and their followers were. This world could not be ignored, even though concern with worldly things could be dangerous to the soul. So the early Christians approached the worldly wisdom of their time with ambivalence: on the one hand, the rhetoric and the arguments of ancient philosophy were snares and delusions that might mislead the simple and the unwary; on the other hand, the sophisticated and the educated of the empire could not be converted unless the Christian message was presented in the terms and rhetoric of the philosophical schools. Before they knew it, the early Christians were enmeshed in metaphysical arguments, some of which involved physics. What, for example, was the nature of Jesus, in purely physical terms? How was it possible that anybody could have two different essential natures, as was claimed for Jesus? Such questions revealed how important knowledge of the arguments of Greek thinkers on the nature of substance could be to those engaged in founding a new theology.
Ancient learning, then, did not die with the fall of Rome and the occupation of the Western Empire by tribes of Germanic barbarians. To be sure, the lamp of learning burned very feebly, but it did not go out. Monks in monasteries faithfully copied out classics of ancient thought and early Christianity and preserved them for posterity. Monasteries continued to teach the elements of ancient learning, for little beyond the elementary survived in the Latin West. In the East the Byzantine Empire remained strong, and there the ancient traditions continued. There was little original work done in the millennium following the fall of Rome, but the ancient texts were preserved along with knowledge of the ancient Greek language. This was to be a precious reservoir of learning for the Latin West in later centuries. Science in Islam
The torch of ancient learning passed first to one of the invading groups that helped bring down the Eastern Empire. In the 7th century the Arabs, inspired by their new religion, burst out of the Arabian peninsula and laid the foundations of an Islamic empire that eventually rivalled that of ancient Rome. To the Arabs, ancient science was a precious treasure. The Qurʿān, the sacred book of Islam, particularly praised medicine as an art close to God. Astronomy and astrology were believed to be one way of glimpsing what God willed for humankind. Contact with Hindu mathematics and the requirements of astronomy stimulated the study of numbers and of geometry. The writings of the Hellenes were, therefore, eagerly sought and translated, and thus much of the science of antiquity passed into Islamic culture. Greek medicine, Greek astronomy and astrology, and Greek mathematics, together with the great philosophical works of Plato and, particularly, Aristotle, were assimilated in Islam by the end of the 9th century. Nor did the Arabs stop with assimilation. They criticized and they innovated. Islamic astronomy and astrology were aided by the construction of great astronomical observatories that provided accurate observations against which the Ptolemaic predictions could be checked. Numbers fascinated Islamic thinkers, and this fascination served as the motivation for the creation of algebra (from Arabic al-jabr) and the study of algebraic functions. Medieval European science
Medieval Christendom confronted Islam chiefly in military crusades, in Spain and the Holy Land, and in theology. From this confrontation came the restoration of ancient learning to the West. The Reconquista in Spain gradually pushed the Moors south from the Pyrenees, and among the treasures left behind were Arabic translations of Greek works of science and philosophy. In 1085 the city of Toledo, with one of the finest libraries in Islam, fell to the Christians. Among the occupiers were Christian monks who quickly began the process of translating ancient works into Latin. By the end of the 12th century much of the ancient heritage was again available to the Latin West.
The medieval world was caricatured by thinkers of the 18th-century Enlightenment as a period of darkness, superstition, and hostility to science and learning. On the contrary, it was one of great technological vitality. The advances that were made may appear today as trifling, but that is because they were so fundamental. They included the horseshoe and the horse collar, without which horsepower cannot be efficiently exploited. The invention of the crank, the brace and bit, the wheelbarrow, and the flying buttress made possible the great Gothic cathedrals. Improvements in the gear trains of waterwheels and the development of windmills harnessed these sources of power with great efficiency. Mechanical ingenuity, building on experience with mills and power wheels, culminated in the 14th century in the mechanical clock, which not only set a new standard of chronometrical accuracy but also provided philosophers with a new metaphor for nature itself.