For all its isolation and intellectual deprivation, the new civilization that took shape in western Europe in the millennium 500 to 1500 achieved some astonishing feats of technological innovation. The intellectual curiosity that led to the foundation of the first universities in the 12th century and applied itself to the recovery of the ancient learning from whatever source it could be obtained was the mainspring also of the technological resourcefulness that encouraged the introduction of the windmill, the improvement and wider application of waterpower, the development of new industrial techniques, the invention of the mechanical clock and gunpowder, the evolution of the sailing ship, and the invention of large-scale printing. Such achievements could not have taken place within a static society. Technological innovation was both the cause and the effect of dynamic development. It is no coincidence that these achievements occurred within the context of a European society that was increasing in population and productivity, stimulating industrial and commercial activity, and expressing itself in the life of new towns and striking cultural activity. Medieval technology mirrored the aspiration of a new and dynamic civilization. The emergence of Western technology (1500–1750)
The technological history of the Middle Ages was one of slow but substantial development. In the succeeding period the tempo of change increased markedly and was associated with profound social, political, religious, and intellectual upheavals in western Europe.
The emergence of the nation-state, the cleavage of the Christian church by the Protestant Reformation, the Renaissance and its accompanying scientific revolution, and the overseas expansion of European states all had interactions with developing technology. This expansion became possible after the advance in naval technology opened up the ocean routes to Western navigators. The conversion of voyages of discovery into imperialism and colonization was made possible by the new firepower. The combination of light, maneuverable ships with the firepower of iron cannon gave European adventurers a decisive advantage, enhanced by other technological assets.
The Reformation, not itself a factor of major significance to the history of technology, nevertheless had interactions with it; the capacity of the new printing presses to disseminate all points of view contributed to the religious upheavals, while the intellectual ferment provoked by the Reformation resulted in a rigorous assertion of the vocational character of work and thus stimulated industrial and commercial activity and technological innovation. It is an indication of the nature of this encouragement that so many of the inventors and scientists of the period were Calvinists, Puritans, and, in England, Dissenters. The Renaissance
The Renaissance had more obviously technological content than the Reformation. The concept of “renaissance” is elusive. Since the scholars of the Middle Ages had already achieved a very full recovery of the literary legacy of the ancient world, as a “rebirth” of knowledge the Renaissance marked rather a point of transition after which the posture of deference to the ancients began to be replaced by a consciously dynamic, progressive attitude. Even while they looked back to Classical models, Renaissance men looked for ways of improving upon them. This attitude is outstandingly represented in the genius of Leonardo da Vinci. As an artist of original perception he was recognized by his contemporaries, but some of his most novel work is recorded in his notebooks and was virtually unknown in his own time. This included ingenious designs for submarines, airplanes, and helicopters and drawings of elaborate trains of gears and of the patterns of flow in liquids. The early 16th century was not yet ready for these novelties: they met no specific social need, and the resources necessary for their development were not available.
An often overlooked aspect of the Renaissance is the scientific revolution that accompanied it. As with the term Renaissance itself, the concept is complex, having to do with intellectual liberation from the ancient world. For centuries the authority of Aristotle in dynamics, of Ptolemy in astronomy, and of Galen in medicine had been taken for granted. Beginning in the 16th century their authority was challenged and overthrown, and scientists set out by observation and experiment to establish new explanatory models of the natural world. One distinctive characteristic of these models was that they were tentative, never receiving the authoritarian prestige long accorded to the ancient masters. Since this fundamental shift of emphasis, science has been committed to a progressive, forward-looking attitude and has come increasingly to seek practical applications for scientific research.
Technology performed a service for science in this revolution by providing it with instruments that greatly enhanced its powers. The use of the telescope by Galileo to observe the moons of Jupiter was a dramatic example of this service, but the telescope was only one of many tools and instruments that proved valuable in navigation, mapmaking, and laboratory experiments. More significant were the services of the new sciences to technology, and the most important of these was the theoretical preparation for the invention of the steam engine. The steam engine
The researches of a number of scientists, especially those of Robert Boyle of England with atmospheric pressure, of Otto von Guericke of Germany with a vacuum, and of the French Huguenot Denis Papin with pressure vessels, helped to equip practical technologists with the theoretical basis of steam power. Distressingly little is known about the manner in which this knowledge was assimilated by pioneers such as Thomas Savery and Thomas Newcomen, but it is inconceivable that they could have been ignorant of it. Savery took out a patent for a “new Invention for Raiseing of Water and occasioning Motion to all Sorts of Mill Work by the Impellent Force of Fire” in 1698 (No. 356). His apparatus depended on the condensation of steam in a vessel, creating a partial vacuum into which water was forced by atmospheric pressure.
Credit for the first commercially successful steam engine, however, must go to Newcomen, who erected his first machine near Dudley Castle in Staffordshire in 1712. It operated by atmospheric pressure on the top face of a piston in a cylinder, in the lower part of which steam was condensed to create a partial vacuum. The piston was connected to one end of a rocking beam, the other end of which carried the pumping rod in the mine shaft. Newcomen was a tradesman in Dartmouth, Devon, and his engines were robust but unsophisticated. Their heavy fuel consumption made them uneconomical when used where coal was expensive, but in the British coalfields they performed an essential service by keeping deep mines clear of water and were extensively adopted for this purpose. In this way the early steam engines fulfilled one of the most pressing needs of British industry in the 18th century. Although waterpower and wind power remained the basic sources of power for industry, a new prime mover had thus appeared in the shape of the steam engine, with tremendous potential for further development as and when new applications could be found for it. Metallurgy and mining