Transport and communications provide an example of a revolution within the Industrial Revolution, so completely were the modes transformed in the period 1750–1900. The first improvements in Britain came in roads and canals in the second half of the 18th century. Although of great economic importance, these were not of much significance in the history of technology, as good roads and canals had existed in continental Europe for at least a century before their adoption in Britain. A network of hard-surfaced roads was built in France in the 17th and early 18th centuries and copied in Germany. Pierre Trésaguet of France improved road construction in the late 18th century by separating the hard-stone wearing surface from the rubble substrata and providing ample drainage. Nevertheless, by the beginning of the 19th century, British engineers were beginning to innovate in both road- and canal-building techniques, with J.L. McAdam’s inexpensive and long-wearing road surface of compacted stones and Thomas Telford’s well-engineered canals. The outstanding innovation in transport, however, was the application of steam power, which occurred in three forms. Steam locomotive
First was the evolution of the railroad: the combination of the steam locomotive and a permanent travel way of metal rails. Experiments in this conjunction in the first quarter of the 19th century culminated in the Stockton & Darlington Railway, opened in 1825, and a further five years of experience with steam locomotives led to the Liverpool and Manchester Railway, which, when it opened in 1830, constituted the first fully timetabled railway service with scheduled freight and passenger traffic relying entirely on the steam locomotive for traction. This railway was designed by George Stephenson, and the locomotives were the work of Stephenson and his son Robert, the first locomotive being the famous Rocket, which won a competition held by the proprietors of the railway at Rainhill, outside Liverpool, in 1829. The opening of the Liverpool and Manchester line may fairly be regarded as the inauguration of the railway era, which continued until World War I. During this time railways were built across all the countries and continents of the world, opening up vast areas to the markets of industrial society. Locomotives increased rapidly in size and power, but the essential principles remained the same as those established by the Stephensons in the early 1830s: horizontal cylinders mounted beneath a multitubular boiler with a firebox at the rear and a tender carrying supplies of water and fuel. This was the form developed from the Rocket, which had diagonal cylinders, being itself a stage in the transition from the vertical cylinders, often encased by the boiler, which had been typical of the earliest locomotives (except Trevithick’s Penydarren engine, which had a horizontal cylinder). Meanwhile, the construction of the permanent way underwent a corresponding improvement on that which had been common on the preceding tramroads: wrought-iron, and eventually steel, rails replaced the cast-iron rails, which cracked easily under a steam locomotive, and well-aligned track with easy gradients and substantial supporting civil-engineering works became a commonplace of the railroads of the world. Road locomotive
The second form in which steam power was applied to transport was that of the road locomotive. There is no technical reason why this should not have enjoyed a success equal to that of the railway engine, but its development was so constricted by the unsuitability of most roads and by the jealousy of other road users that it achieved general utility only for heavy traction work and such duties as road rolling. The steam traction engine, which could be readily adapted from road haulage to power farm machines, was nevertheless a distinguished product of 19th-century steam technology. Steamboats and ships
The third application was considerably more important, because it transformed marine transport. The initial attempts to use a steam engine to power a boat were made on the Seine River in France in 1775, and several experimental steamships were built by William Symington in Britain at the turn of the 19th century. The first commercial success in steam propulsion for a ship, however, was that of the American Robert Fulton, whose paddle steamer the “North River Steamboat,” commonly known as the Clermont after its first overnight port, plied between New York and Albany in 1807, equipped with a Boulton and Watt engine of the modified beam or side-lever type, with two beams placed alongside the base of the engine in order to lower the centre of gravity. A similar engine was installed in the Glasgow-built Comet, which was put in service on the Clyde in 1812 and was the first successful steamship in Europe. All the early steamships were paddle-driven, and all were small vessels suitable only for ferry and packet duties because it was long thought that the fuel requirements of a steamship would be so large as to preclude long-distance cargo carrying. The further development of the steamship was thus delayed until the 1830s, when I.K. Brunel began to apply his ingenious and innovating mind to the problems of steamship construction. His three great steamships each marked a leap forward in technique. The Great Western (launched 1837), the first built specifically for oceanic service in the North Atlantic, demonstrated that the proportion of space required for fuel decreased as the total volume of the ship increased. The Great Britain (launched 1843) was the first large iron ship in the world and the first to be screw-propelled; its return to the port of Bristol in 1970, after a long working life and abandonment to the elements, is a remarkable testimony to the strength of its construction. The Great Eastern (launched 1858), with its total displacement of 18,918 tons, was by far the largest ship built in the 19th century. With a double iron hull and two sets of engines driving both a screw and paddles, this leviathan was never an economic success, but it admirably demonstrated the technical possibilities of the large iron steamship. By the end of the century, steamships were well on the way to displacing the sailing ship on all the main trade routes of the world. Printing and photography
Communications were equally transformed in the 19th century. The steam engine helped to mechanize and thus to speed up the processes of papermaking and printing. In the latter case the acceleration was achieved by the introduction of the high-speed rotary press and the Linotype machine for casting type and setting it in justified lines (i.e., with even right-hand margins). Printing, indeed, had to undergo a technological revolution comparable to the 15th-century invention of movable type to be able to supply the greatly increasing market for the printed word. Another important process that was to make a vital contribution to modern printing was discovered and developed in the 19th century: photography. The first photograph was taken in 1826 or 1827 by the French physicist J.N. Niepce, using a pewter plate coated with a form of bitumen that hardened on exposure. His partner L.-J.-M. Daguerre and the Englishman W.H. Fox Talbot adopted silver compounds to give light sensitivity, and the technique developed rapidly in the middle decades of the century. By the 1890s George Eastman in the United States was manufacturing cameras and celluloid photographic film for a popular market, and the first experiments with the cinema were beginning to attract attention. Telegraphs and telephones