One industry that has not been deeply influenced by new control-engineering techniques is construction, in which the nature of the tasks involved makes dependence on a large labour force still essential, whether it be in constructing a skyscraper, a new highway, or a tunnel. Nevertheless, some important new techniques appeared since 1945, notably the use of heavy earth-moving and excavating machines such as the bulldozer and the tower crane. The use of prefabricated parts according to a predetermined system of construction became widespread. In the construction of housing units, often in large blocks of apartments or flats, such systems are particularly relevant because they make for standardization and economy in plumbing, heating, and kitchen equipment. The revolution in home equipment that began before World War II has continued apace since, with a proliferation of electrical equipment. Transport and communications
Many of these changes were facilitated by improvements in transport and communications. Transport developments have for the most part continued those well established in the early 20th century. The automobile proceeded in its phenomenal growth in popularity, causing radical changes in many of the patterns of life, although the basic design of the motorcar has remained unchanged. The airplane, benefiting from jet propulsion and a number of lesser technical advances, made spectacular gains at the expense of both the ocean liner and the railroad. However, the growing popularity of air transport brought problems of crowded airspace, noise, and airfield siting.
World War II helped bring about a shift to air transport: direct passenger flights across the Atlantic were initiated immediately after the war. The first generation of transatlantic airliners were the aircraft developed by war experience from the Douglas DC-3 and the pioneering types of the 1930s incorporating all-metal construction with stressed skin, wing flaps and slots, retractable landing gear, and other advances. The coming of the big jet-powered civil airliner in the 1950s kept pace with the rising demand for air services but accentuated the social problems of air transport. The solution to these problems may lie partly in the development of vertical takeoff and landing techniques, a concept successfully pioneered by a British military aircraft, the Hawker Siddeley Harrier. Longer-term solutions may be provided by the development of air-cushion vehicles derived from the Hovercraft, in use in the English Channel and elsewhere, and one of the outstanding technological innovations of the period since 1945. The central feature of this machine is a down-blast of air, which creates an air cushion on which the craft rides without direct contact with the sea or ground below it. The remarkable versatility of the air-cushion machine is beyond doubt, but it has proved difficult to find very many transportation needs that it can fulfill better than any craft already available. Despite these difficulties, it seems likely that this type of vehicle will have an important future. It should be remembered, however, that all the machines mentioned so far, automobiles, airplanes, and Hovercraft, use oil fuels, and it is possible that the exhaustion of these will turn attention increasingly to alternative sources of power and particularly to electric traction (electric railroads and autos), in which field there have been promising developments such as the linear-induction motor. Supersonic flight, for nearly 30 years an exclusive capability of military and research aircraft, became a commercial reality in 1975 with the Soviet Tu-144 cargo plane; the Concorde supersonic transport (SST), built jointly by the British and French governments, entered regular passenger service early in 1976.
In communications also, the dominant lines of development continue to be those that were established before or during World War II. In particular, the rapid growth of television services, with their immense influence as media of mass communication, was built on foundations laid in the 1920s and 1930s, while the universal adoption of radar on ships and airplanes followed the invention of a device to give early warning of aerial attack. But in certain features the development of communications in the space age has produced important innovations. First, the transistor, so significant for computers and control engineering, made a large contribution to communications technology. Second, the establishment of space satellites, considered to be a remote theoretical possibility in the 1940s, became part of the accepted technological scene in the 1960s, and these have played a dramatic part in telephone and television communication as well as in relaying meteorological pictures and data. Third, the development of magnetic tape as a means of recording sound and, more recently, vision provided a highly flexible and useful mode of communication. Fourth, new printing techniques were developed. In phototypesetting, a photographic image is substituted for the conventional metal type. In xerography, a dry copying process, an ink powder is attracted to the image to be copied by static electricity and then fused by heating. Fifth, new optical devices such as zoom lenses increased the power of cameras and prompted corresponding improvements in the quality of film available to the cinema and television. Sixth, new physical techniques such as those that produced the laser (light amplification by stimulated emission of radiation) made available an immensely powerful means of communication over long distances, although these are still in their experimental stages. The laser also acquired significance as an important addition to surgical techniques and as an instrument of space weaponry. The seventh and final communications innovation is the use of electromagnetic waves other than light to explore the structure of the universe by means of the radio telescope and its derivative, the X-ray telescope. This technique was pioneered after World War II and has since become a vital instrument of satellite control and space research. Radio telescopes have also been directed toward the Sun’s closest neighbours in space in the hope of detecting electromagnetic signals from other intelligent species in the universe. Military technology
Military technology in the space age has been concerned with the radical restructuring of strategy caused by the invention of nuclear weapons and the means of delivering them by intercontinental ballistic missiles. Apart from these major features and the elaborate electronic systems intended to give an early warning of missile attack, military reorganization has emphasized high maneuverability through helicopter transport and a variety of armed vehicles. Such forces were deployed in wars in Korea and Vietnam, the latter of which also saw the widespread use of napalm bombs and chemical defoliants to remove the cover provided by dense forests. World War II marked the end of the primacy of the heavily armoured battleship. Although the United States recommissioned several battleships in the 1980s, the aircraft carrier became the principal capital ship in the navies of the world. Emphasis now is placed on electronic detection and the support of nuclear-powered submarines equipped with missiles carrying nuclear warheads. The only major use of nuclear power since 1945, other than generating large-scale electric energy, has been the propulsion of ships, particularly missile-carrying submarines capable of cruising underwater for extended periods. Space exploration