Выбрать главу

Всем, конечно, знакома обыкновенная батарейка от карманного фонаря. В батарейке происходят те же явления, что и при горении угля. Батарейка, или, что одно и то же, гальванический элемент, состоит из двух разных стержней (электродов), помещённых в электролит, то есть в среду, проводящую электрический ток. Один электрод цинковый, а другой — угольный. Цинк, растворяясь в электролите, теряет электроны, уголь же их присоединяет. Если соединить полюса батарейки проводником, то по нему потёчет электрический ток.

Отличие этого процесса от горения угля в прямом смысле заключается в том, что при горении угля обмен  электронами между углеродом и кислородом происходит сразу во всём пространстве. В батарейке же процесс обмена электронами между цинком и углём происходит в двух строго определённых местах: на поверхности отрицательного цинкового электрода и положительного угольного. Благодаря этому в батарейке создаётся порядок в движении электронов, то есть электрический ток.

Батарейка — очень удобный источник энергии. Он в особенности незаменим в тех случаях, когда потребляется мало электрической энергии, причём не непрерывно, а время от времени. А почему бы не построить уже сейчас электростанцию, работающую от батарей из таких элементов? Ведь их коэффициент полезного действия очень высок! К сожалению, сделать это нельзя, так как срок службы элементов невелик.

Идея создания электрического элемента возникла давно. Ещё в 1802 году изобретатель безопасной шахтёрской лампы Хэмфри Дэви высказал предположение, что химическую энергию, высвобождающуюся при окислении угля, можно непосредственно преобразовать в электрическую. К сожалению, Дэви не удалось изготовить такое устройство. Зато уже в 1839 году была продемонстрирована первая так называемая газовая батарея. В ней энергия реакции окисления водорода преобразовывалась непосредственно в электрический ток. Газовая батарея — это первый топливный элемент, где химическая энергия топлива непосредственно превращалась в электрическую.

Конечно, первый топливный элемент был очень несовершенен и обладал малой мощностью. Работы продолжались. И лишь совсем недавно были созданы промышленные топливные элементы. Какие же внутренние процессы сопровождают их работу?

III. ЭЛЕКТРИЧЕСКИЕ «СТРАННИКИ»

Можно ли совершенно чистую воду, очень плохой проводник электрического тока, превратить в хороший проводник? Можно, и это очень легко сделать. Необходимо только растворить в ней небольшое количество поваренной соли. Водопроводная вода только кажется абсолютно чистой. На самом же деле она содержит небольшие количества растворённых солей, что и помогает ей проводить электрический ток. Вот почему иногда «дёргает» человека, прикоснувшегося мокрой рукой к электрическому выключателю, в особенности если выключатель в металлическом корпусе.

Водные растворы, которые проводят электрический ток, называются электролитами. Если через них пропускать электрический ток, то можно наблюдать различные интересные явления. Представьте себе, что в сосуд с электролитом из раствора сульфата меди опущены два медных электрода, присоединённых к электрической цепи с батареей. Один из электродов, тот, что соединён с отрицательным полюсом батареи, назван катодом. А тот, что с положительным — анодом. При пропускании электрического тока через некоторое время на катоде появится свежий слой меди, а анод постепенно будет растворяться. Может быть и по-другому: медь по-прежнему будет осаждаться на катоде, а на аноде появятся пузырьки кислорода. Всё зависит от материала анода, катода и от состава электролита.

Особый интерес представляет случай, когда электролит — раствор серной кислоты в воде, а электроды сделаны из платины. При пропускании электрического тока у электродов выделяются газы, причём у катода — водород, у анода — кислород. По мере течения процесса уровень электролита непрерывно понижается, то есть концентрация серной кислоты возрастает. В конце концов остаётся чистая серная кислота. Куда же делась вода?

Оказывается, в процессе электролиза она разложилась на составные элементы — водород и кислород, которые и выделялись у электродов.

Долгое время оставалось неясным: каким образом переносятся электрические заряды в электролитах? Объяснение было найдено в 1887 году, когда известный шведский химик Аррениус разработал свою знаменитую теорию электролитической диссоциации.