Secondly, if we somehow succeed in hitting the brakes, our economy will collapse, along with our society. As explained in a later chapter, the modern economy needs constant and indefinite growth in order to survive. If growth ever stops, the economy won’t settle down to some cosy equilibrium; it will fall to pieces. That’s why capitalism encourages us to seek immortality, happiness and divinity. There’s a limit to how many shoes we can wear, how many cars we can drive and how many skiing holidays we can enjoy. An economy built on everlasting growth needs endless projects – just like the quests for immortality, bliss and divinity.
Well, if we need limitless projects, why not settle for bliss and immortality, and at least put aside the frightening quest for superhuman powers? Because it is inextricable from the other two. When you develop bionic legs that enable paraplegics to walk again, you can also use the same technology to upgrade healthy people. When you discover how to stop memory loss among older people, the same treatments might enhance the memory of the young.
No clear line separates healing from upgrading. Medicine almost always begins by saving people from falling below the norm, but the same tools and know-how can then be used to surpass the norm. Viagra began life as a treatment for blood-pressure problems. To the surprise and delight of Pfizer, it transpired that Viagra can also cure impotence. It enabled millions of men to regain normal sexual abilities; but soon enough men who had no impotence problems in the first place began using the same pill to surpass the norm, and acquire sexual powers they never had before.45
What happens to particular drugs can also happen to entire fields of medicine. Modern plastic surgery was born in the First World War, when Harold Gillies began treating facial injuries in the Aldershot military hospital.46 When the war was over, surgeons discovered that the same techniques could also turn perfectly healthy but ugly noses into more beautiful specimens. Though plastic surgery continued to help the sick and wounded, it devoted increasing attention to upgrading the healthy. Nowadays plastic surgeons make millions in private clinics whose explicit and sole aim is to upgrade the healthy and beautify the wealthy.47
The same might happen with genetic engineering. If a billionaire openly stated that he intended to engineer super-smart offspring, imagine the public outcry. But it won’t happen like that. We are more likely to slide down a slippery slope. It begins with parents whose genetic profile puts their children at high risk of deadly genetic diseases. So they perform in vitro fertilisation, and test the DNA of the fertilised egg. If everything is in order, all well and good. But if the DNA test discovers the dreaded mutations – the embryo is destroyed.
Yet why take a chance by fertilising just one egg? Better fertilise several, so that even if three or four are defective there is at least one good embryo. When this in vitro selection procedure becomes acceptable and cheap enough, its usage may spread. Mutations are a ubiquitous risk. All people carry in their DNA some harmful mutations and less-than-optimal alleles. Sexual reproduction is a lottery. (A famous – and probably apocryphal – anecdote tells of a meeting in 1923 between Nobel Prize laureate Anatole France and the beautiful and talented dancer Isadora Duncan. Discussing the then popular eugenics movement, Duncan said, ‘Just imagine a child with my beauty and your brains!’ France responded, ‘Yes, but imagine a child with my beauty and your brains.’) Well then, why not rig the lottery? Fertilise several eggs, and choose the one with the best combination. Once stem-cell research enables us to create an unlimited supply of human embryos on the cheap, you can select your optimal baby from among hundreds of candidates, all carrying your DNA, all perfectly natural, and none requiring any futuristic genetic engineering. Iterate this procedure for a few generations, and you could easily end up with superhumans (or a creepy dystopia).
But what if after fertilising even numerous eggs, you find that all of them contain some deadly mutations? Should you destroy all the embryos? Instead of doing that, why not replace the problematic genes? A breakthrough case involves mitochondrial DNA. Mitochondria are tiny organelles within human cells, which produce the energy used by the cell. They have their own set of genes, which is completely separate from the DNA in the cell’s nucleus. Defective mitochondrial DNA leads to various debilitating or even deadly diseases. It is technically feasible with current in vitro technology to overcome mitochondrial genetic diseases by creating a ‘three-parent baby’. The baby’s nuclear DNA comes from two parents, while the mitochondrial DNA comes from a third person. In 2000 Sharon Saarinen from West Bloomfield, Michigan, gave birth to a healthy baby girl, Alana. Alana’s nuclear DNA came from her mother, Sharon, and her father, Paul, but her mitochondrial DNA came from another woman. From a purely technical perspective, Alana has three biological parents. A year later, in 2001, the US government banned this treatment, due to safety and ethical concerns.48
However, on 3 February 2015 the British Parliament voted in favour of the so-called ‘three-parent embryo’ law, allowing this treatment – and related research – in the UK.49 At present it is technically unfeasible, and illegal, to replace nuclear DNA, but if and when the technical difficulties are solved, the same logic that favoured the replacement of defective mitochondrial DNA would seem to warrant doing the same with nuclear DNA.
Following selection and replacement, the next potential step is amendment. Once it becomes possible to amend deadly genes, why go through the hassle of inserting some foreign DNA, when you can just rewrite the code and turn a dangerous mutant gene into its benign version? Then we might start using the same mechanism to fix not just lethal genes, but also those responsible for less deadly illnesses, for autism, for stupidity and for obesity. Who would like his or her child to suffer from any of these? Suppose a genetic test indicates that your would-be daughter will in all likelihood be smart, beautiful and kind – but will suffer from chronic depression. Wouldn’t you want to save her from years of misery by a quick and painless intervention in the test tube?
And while you are at it, why not give the child a little push? Life is hard and challenging even for healthy people. So it would surely come in handy if the little girl had a stronger-than-normal immune system, an above-average memory or a particularly sunny disposition. And even if you don’t want that for your child – what if the neighbours are doing it for theirs? Would you have your child lag behind? And if the government forbids all citizens from engineering their babies, what if the North Koreans are doing it and producing amazing geniuses, artists and athletes that far outperform ours? And like that, in baby steps, we are on our way to a genetic child catalogue.
Healing is the initial justification for every upgrade. Find some professors experimenting in genetic engineering or brain–computer interfaces, and ask them why they are engaged in such research. In all likelihood they would reply that they are doing it to cure disease. ‘With the help of genetic engineering,’ they would explain, ‘we could defeat cancer. And if we could connect brains and computers directly, we could cure schizophrenia.’ Maybe, but it will surely not end there. When we successfully connect brains and computers, will we use this technology only to cure schizophrenia? If anybody really believes this, then they may know a great deal about brains and computers, but far less about the human psyche and human society. Once you achieve a momentous breakthrough, you cannot restrict its use to healing and completely forbid using it for upgrading.