Выбрать главу

Другая сложность – частое нарушение правил и предписаний водителями, не говоря уже о пешеходах. Это может стать реальным препятствием для будущего беспилотных автомобилей в городских условиях: мы пока что не знаем, как решать юридические проблемы попадания беспилотника в дорожно-транспортное происшествие. На взгляд Шашуа, есть компромисс, довольно близкий к подходу Google, но достаточно реалистичный для применения при движении по автомагистралям всего через пару лет. Он предполагает использование сложной системы датчиков и искусственного интеллекта, помогающих водителю, который остается участником процесса управления, но становится человеком с «супервозможностями», способным видеть дальше и более четко и, наверное, выполнять другие задачи помимо вождения. Система может подавать сигнал, когда необходимо участие человека, с учетом предпочтений водителя, а возможно, и автомобиля.

Когда я стоял возле Audi в пригороде Иерусалима, мне было ясно, что это новая земля обетованная. Нравится нам это или нет, но мы больше не живем в библейском мире, и будущее зависит не от достижения определенной территории, а от быстроты приближения мира технологических чудес. Машины, которые рождаются как големы, становятся более совершенными, способными брать на себя все больше функций человека – от механических действий до решения сложнейших задач.

У Google есть проблема. За три с лишним года работы по программе создания автомобиля без водителя небольшая группа исследователей базирующегося в Маунтин-Вью интернет-поисковика без происшествий накрутила в беспилотном режиме более 800 000 км. Они добились потрясающего прогресса в областях, которые были не по зубам традиционному автомобилестроению. Автомобили Google могут ездить днем и ночью, перестраиваться и даже ориентироваться на самой кривой улице мира – Ломбард-стрит в Сан-Франциско. Google добилась этих успехов, используя интернет для создания виртуальной инфраструктуры. Она не строила дорогостоящие «умные» шоссе, а опиралась на точные карты мира, создаваемые в рамках сервиса Google Street View.

Некоторые ее системы обладали почти что человеческими возможностями. Например, система искусственного зрения могла распознавать зоны строительных работ, притормаживать и уверенно прокладывать курс между препятствиями. Она видела частично перекрывающие дорогу автомобили и позволяла объезжать их. Ее научили не только распознавать велосипедистов, но и идентифицировать их жесты, притормаживать и пропускать при перестроении в другой ряд. Иными словами, Google приближалась к решению еще более сложной проблемы – обучение беспилотника реагировать на жесты регулировщика на месте дорожно-транспортного происшествия или проведения строительных работ.

Робототехнику Массачусетского технологического института Джону Леонарду особенно нравилось ездить по Кеймбриджу и снимать видеоролики о наиболее сложных для беспилотных автомобилей ситуациях. В одном из его роликов автомобиль останавливается перед знаком STOP на Т-образном перекрестке и ожидает возможности повернуть налево. Это никак не удается сделать из-за интенсивного потока машин справа, где нет знака STOP. Ситуация осложняется и редкими машинами, идущими с другой стороны. Проблема заключается в том, как убедить водителей, едущих слева, уступить дорогу и как при этом не столкнуться ни с кем из мчащихся справа{16}.

Видеоролик, показывающий, пожалуй, самую большую проблему для системы зрения Google, был снят на оживленном переходе в центре города. У регулируемого перехода стоит толпа людей. Автомобиль едет на зеленый свет, как вдруг полицейский в левой части кадра поднимает руку, чтобы остановить движение и пропустить пешеходов. Возможно, для компьютерного зрения такая проблема вполне разрешима. Если уж современные системы умеют распознавать велосипедистов и их жесты, то почему бы им не справиться с жестами полицейских? Так-то оно так, да только вряд ли эта проблема получит решение легко и быстро.

Увлекшись идеей преображения системы образования с помощью массовых открытых курсов дистанционного обучения и не желая состязаться за лидерство в X Lab с соучредителем Google Сергеем Брином, Трун отошел от исследовательской программы в 2012 г. Как это часто случается в Кремниевой долине, Трун не смог довести до конца свой проект. Он создал секретную лабораторию X Laboratory в Google и в течение нескольких лет руководил ею, но, когда к проекту подключился Брин, решил, что нужно двигаться дальше. Брин предлагал ему место содиректора, но Трун понимал, что в присутствии соучредителя Google ему уже не стоять у руля, а потому настало время новых задач.

вернуться

16

John Markoff, «Police, Pedestrians and the Social Ballet of Merging: The Real Challenges for Self-Driving Cars,» New York Times, May 29, 2014, http://bits.blogs.nytimes.com/2014/05/29/police-bicyclists-and-pedestrians-the-real-challenges-for-selfdriving-cars/?_php=true&_type=blogs&_r=0.