Выбрать главу

How do we arrive at on the order of 100 to 1,000 trillion connections in the brain from only tens of millions of bytes of design information? Obviously, the answer is through massive redundancy. Dharmendra Modha, manager of Cognitive Computing for IBM Research, writes that “neuroanatomists have not found a hopelessly tangled, arbitrarily connected network, completely idiosyncratic to the brain of each individual, but instead a great deal of repeating structure within an individual brain and a great deal of homology across species…. The astonishing natural reconfigurability gives hope that the core algorithms of neurocomputation are independent of the specific sensory or motor modalities and that much of the observed variation in cortical structure across areas represents a refinement of a canonical circuit; it is indeed this canonical circuit we wish to reverse engineer.”8

Allen argues in favor of an inherent “complexity brake that would necessarily limit progress in understanding the human brain and replicating its capabilities,” based on his notion that each of the approximately 100 to 1,000 trillion connections in the human brain is there by explicit design. His “complexity brake” confuses the forest with the trees. If you want to understand, model, simulate, and re-create a pancreas, you don’t need to re-create or simulate every organelle in every pancreatic islet cell. You would want instead to understand one islet cell, then abstract its basic functionality as it pertains to insulin control, and then extend that to a large group of such cells. This algorithm is well understood with regard to islet cells. There are now artificial pancreases that utilize this functional model being tested. Although there is certainly far more intricacy and variation in the brain than in the massively repeated islet cells of the pancreas, there is nonetheless massive repetition of functions, as I have described repeatedly in this book.

Critiques along the lines of Allen’s also articulate what I call the “scientist’s pessimism.” Researchers working on the next generation of a technology or of modeling a scientific area are invariably struggling with that immediate set of challenges, so if someone describes what the technology will look like in ten generations, their eyes glaze over. One of the pioneers of integrated circuits was recalling for me recently the struggles to go from 10-micron (10,000 nanometers) feature sizes to 5-micron (5,000 nanometers) features over thirty years ago. The scientists were cautiously confident of reaching this goal, but when people predicted that someday we would actually have circuitry with feature sizes under 1 micron (1,000 nanometers), most of them, focused on their own goal, thought that was too wild to contemplate. Objections were made regarding the fragility of circuitry at that level of precision, thermal effects, and so on. Today Intel is starting to use chips with 22-nanometer gate lengths.

We witnessed the same sort of pessimism with respect to the Human Genome Project. Halfway through the fifteen-year effort, only 1 percent of the genome had been collected, and critics were proposing basic limits on how quickly it could be sequenced without destroying the delicate genetic structures. But thanks to the exponential growth in both capacity and price/performance, the project was finished seven years later. The project to reverse-engineer the human brain is making similar progress. It is only recently, for example, that we have reached a threshold with noninvasive scanning techniques so that we can see individual interneuronal connections forming and firing in real time. Much of the evidence I have presented in this book was dependent on such developments and has only recently been available.

Allen describes my proposal about reverse-engineering the human brain as simply scanning the brain to understand its fine structure and then simulating an entire brain “bottom up” without comprehending its information-processing methods. This is not my proposition. We do need to understand in detail how individual types of neurons work, and then gather information about how functional modules are connected. The functional methods that are derived from this type of analysis can then guide the development of intelligent systems. Basically, we are looking for biologically inspired methods that can accelerate work in AI, much of which has progressed without significant insight as to how the brain performs similar functions. From my own work in speech recognition, I know that our work was greatly accelerated when we gained insights as to how the brain prepares and transforms auditory information.

The way that the massively redundant structures in the brain differentiate is through learning and experience. The current state of the art in AI does in fact enable systems to also learn from their own experience. The Google self-driving cars learn from their own driving experience as well as from data from Google cars driven by human drivers; Watson learned most of its knowledge by reading on its own. It is interesting to note that the methods deployed today in AI have evolved to be mathematically very similar to the mechanisms in the neocortex.

Another objection to the feasibility of “strong AI” (artificial intelligence at human levels and beyond) that is often raised is that the human brain makes extensive use of analog computing, whereas digital methods inherently cannot replicate the gradations of value that analog representations can embody. It is true that one bit is either on or off, but multiple-bit words easily represent multiple gradations and can do so to any desired degree of accuracy. This is, of course, done all the time in digital computers. As it is, the accuracy of analog information in the brain (synaptic strength, for example) is only about one level within 256 levels that can be represented by eight bits.

In chapter 9 I cited Roger Penrose and Stuart Hameroff’s objection, which concerned microtubules and quantum computing. Recall that they claim that the microtubule structures in neurons are doing quantum computing, and since it is not possible to achieve that in computers, the human brain is fundamentally different and presumably better. As I argued earlier, there is no evidence that neuronal microtubules are carrying out quantum computation. Humans in fact do a very poor job of solving the kinds of problems that a quantum computer would excel at (such as factoring large numbers). And if any of this proved to be true, there would be nothing barring quantum computing from also being used in our computers.

John Searle is famous for introducing a thought experiment he calls “the Chinese room,” an argument I discuss in detail in The Singularity Is Near.9 In short, it involves a man who takes in written questions in Chinese and then answers them. In order to do this, he uses an elaborate rulebook. Searle claims that the man has no true understanding of Chinese and is not “conscious” of the language (as he does not understand the questions or the answers) despite his apparent ability to answer questions in Chinese. Searle compares this to a computer and concludes that a computer that could answer questions in Chinese (essentially passing a Chinese Turing test) would, like the man in the Chinese room, have no real understanding of the language and no consciousness of what it was doing.