Выбрать главу

Для упрощения расчетных соотношений введем параметр «загрузки мембраны»: μ=m/S (кг/м2). Тогда с учетом (9)

μ = [(ξ00)-1]P1P1/K. (11)

Следует отметить, что с помощью одной мембраны невозможна независимая регулировка концентраций кислорода и углекислого газа: если задана концентрация кислорода в стационарном режиме, то концентрация углекислого газа тем самым уже определена уравнением (10).

Представляет практический интерес рассмотрение вопросов возможности регулирования газового состава в контейнерах с ГСЭМТ при хранении цветочной продукции. Известно, что существуют экстремальные значения концентрации кислорода и углекислого газа, превышение которых в случае максимума или снижение ниже минимума недопустимо по биохимическим соображениям. Для кислорода такое экстремальное значение—2, для углекислого газа—10 %. С учетом этого можно определить границы координатной сетки режимов хранения растительной продукции, а также оценить возможности регулирования газового состава в пределах указанных границ при использовании для хранения контейнеров с ГСЭМТ (Корнилова, 1983).

Если отложить по координатным осям значения концентраций углекислого газа и кислорода, то нанесенные на плоскость с такими координатами точки и области возможных режимов хранения образуют четко выраженную тенденцию к группируемости в определенных зонах.

На рисунке 14 показаны возможности перемещения рабочей точки на карте режимов, определяемые координатами ξ1 и ξ2, в зависимости от относительной загрузки мембраны μ/μ0, причем σ — р1P1/K(кг/м2).

Рис. 14. Влияние разброса параметров мембран на координаты области рабочего режима

Загрузка мембраны по желанию может варьировать в определенных пределах. Подбор оптимальных координат концентраций кислорода и углекислого газа можно осуществлять, изменяя относительную загрузку мембраны (соотношение μ/μ0, путем перемещения вдоль линии σ = const см. рис. 13). В зависимости от относительной загрузки меняется концентрация кислорода и связанная с ней концентрация углекислого газа (табл. 13).

13. Состав газовой среды (%) в зависимости от относительной загрузки мембраны

На практике значение относительной загрузки обычно не превышает 10, будучи ограниченным предельно допустимой концентрацией кислорода, равной 2 %.

В настоящее время разработаны мембраны для хранения свежей растительной, в том числе и цветочной, продукции в МГС типа СИГМА, ПВТМС, МДО-АС и МД-К2, Карбосил-АС. Первая представляет собой текстильную основу, покрытую силиконовым эластомером, например вулканизатом полидиметилсилоксанового каучука. Остальные не имеют тканевой основы. Мембрана ПВТМС изготавливается из поливинилтриметилсилана, а мембраны типа МДО-АС и МД-К2—на основе крем-нийорганических полимеров. Основные характеристики мембран для создания МГС при хранении свежей растительной продукции приведены в таблице 14.

14. Параметры мембран для хранения растительной продукции

Мембраны часто имеют определенный разброс своих параметров, поэтому вместо рабочей точки на карте режимов в координатах концентраций С02 и О2 существует некоторая вероятная рабочая область, размеры которой можно оценить расчетным путем.

Некоторые мембраны имеют коэффициент вариации CV по проницаемости около 40, а по селективности — 25 %. Для оценки величины вероятной рабочей области на карте режимов (средняя селективность а = 3,69 при CV = 25 % и СV = 40 % по проницаемости для кислорода) определим сектор рабочих режимов, задаваемый вариациями селективности а = (3,69+0,25)3,69=3,69=1=0,92, то есть значение селективности будет находиться между вероятными значениями σmax = 2,77 и σmах = 4,61. С учетом того что μ — пропорционально величине Р, коэффициент вариации значения р будет соответствовать коэффициенту вариации для Р. В этом случае при среднем значении μ/μ0 = 6 возможны отклонения (μ/μ0)min = 6—(6•0,4) = 4,6 И (μ/μ0)mах = 6+(6–0,4) = 8,4.

Этими координатами и ограничивается площадь возможных режимов, где должна находиться вероятная рабочая точка, соответствующая данной мембране (см. рис. 14, заштрихованная область).