Выбрать главу

Поскольку сжать жидкость тоже нелегко2, ее частицы, по всей видимости, тоже соприкасаются. Но между жидкостью и твердым телом есть явное различие. Первая способна легко менять свою форму – более того, она делает это, как только вы переносите ее из одного контейнера в другой. Это позволяет предположить, что, хотя ее частички по-прежнему находятся в соприкосновении, они могут свободно проскальзывать друг над другом и занимать относительно друг друга любые положения, в зависимости от того, какие из этих положений оказываются наиболее удобными.

И, наконец, остаются газы. Они очень рассеяны и по большей части невидимы, так что часто вы даже их не замечаете – вы ведь не чувствуете воздуха, который вас окружает, пока вы сидите и читаете эту книгу? Но, конечно же, воздух в какой-то степени ощутим. Скажем, если вас застигла буря, вы можете ощутить, как он на вас давит, а иногда получается уловить запах газа (скажем, аромат кофе) – видимо, нечто все же входит с вашими чувствами в контакт.

Более того, газы также состоят из частиц, но таких, которые совершенно свободны от соседей и далеки от соприкосновения. Сжать газ относительно легко (представьте, как накачиваете велосипедную шину), поскольку между частичками много свободного пространства. Например, в атмосфере Земли частицы воздуха отделены друг от друга расстоянием, примерно в десять раз превышающим их диаметр, и могут свободно летать куда угодно, отталкиваясь друг от друга при встрече, словно бильярдные шары. Если вы накачаете шины своего велосипеда до рекомендуемой величины в 7,9 атмосферы, то вы только что сжали воздух в два раза во всех трех направлениях, так что расстояние, разделяющее частицы, теперь превышает их диаметр не в десять, а лишь в пять раз. Давление внутри вашей шины теперь в восемь раз больше, чем у окружающего воздуха, поскольку воздушные частицы ударяются о стенки шины в 2 × 2 × 2 раза чаще. Чтобы сконцентрировать водяной пар в жидкую форму, частицы должны сблизиться в 10 × 10 × 10 = 1000 раз, и именно поэтому вода в 1000 раз плотнее воздуха (примерно 103 кг/м3 против 1 кг/м3).

И вот что у нас получается. Три состояния, или «фазы», вещества не показывают фундаментальных различий в свойствах частиц, из которых это вещество состоит. Эти частицы просто могут находиться на четко определенных местах, слабо соприкасаться и проскальзывать друг над другом или свободно витать в пустом пространстве. Вода остается водой вне зависимости от того, пребывает ли она в твердой форме (лед), жидкой (вода) или газообразной (пар), а переходы между этими формами – это лишь вопрос изменения взаимных пространственных отношений, в которые вступают между собой частички воды.

Температура: мера движения

В рассуждении о переходах, которые вещество может совершать между различными состояниями, мы должны ненадолго отклониться от прямого пути и поговорить, во‐первых, о нашей модели для понимания тепла, а во‐вторых, о системе измерений, которую мы используем для его описания. Как нам известно из повседневного опыта, твердая форма воды (лед) – холодная, а газообразная форма (пар) – горячая. Но что такое «холодный» и «горячий»? Оказывается, это просто слова, необходимые нам, чтобы выразить характер относительного движения наших элементарных частиц: горячий = быстрый, а холодный = медленный. То, что мы называем температурой, – это просто непосредственная мера средней энергии движения, также называемой «кинетической энергией» (см. гл. 4) этих частиц.

Элементарные частицы воды в кубике льда соприкасаются друг с другом. Они закреплены на месте, но вибрируют (если угодно, дрожат) со скромным количеством энергии в расчете на частицу. Если поднять температуру, частицы будут вибрировать быстрее. Если повысить ее до достаточного уровня, то связи, удерживающие частицы на местах, разорвутся, и тогда частички смогут свободно скользить друг над другом, а мы получим жидкость. Это происходит, когда температура достигает 32 °F, или 0 °C. Продолжая нагревать воду, мы заставляем частицы двигаться быстрее и быстрее, до тех пор, пока, при 212 °F или 100 °C, они не разлучатся с соседями окончательно и не получат возможность свободно улетучиться прочь в форме газа.

При той или иной температуре не все частицы вещества движутся с абсолютно одной и той же скоростью; некоторые перемещаются быстрее, чем все в среднем, а некоторые – медленнее. Распределение скоростей (или, более точно, кинетических энергий = ½ mv2) отражено в виде кривых, представленных на рис. 3.1. Поскольку ни одна частица не может двигаться медленнее нуля, распределение немного асимметрично, а несколько частиц движутся намного быстрее среднего значения (например, если одна ничего не подозревающая частичка водяного пара получит удар от четырех других, пришедших слева, она с высокой скоростью устремится вправо). Но в общем и целом энергия большинства частиц не превышает среднее значение более чем в два раза3.